期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Regulating^(*)COOH intermediate via amino alkylation engineering for exceptionally effective photocatalytic CO_(2) reduction 被引量:1
1
作者 Chengcheng Chen Qiaoyu zhang +3 位作者 Fangting Liu zhengguo zhang Qiong Liu Xiaoming Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期282-291,共10页
Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate ... Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%. 展开更多
关键词 Polymeric carbonnitride Regulate intermediate Photocatalytic CO_(2)reduction Amino alkylation ^(*)COOH adsorption
在线阅读 下载PDF
A Review of Anode Materials for Dual‑Ion Batteries
2
作者 Hongzheng Wu Shenghao Luo +6 位作者 Hubing Wang Li Li Yaobing Fang Fan zhang Xuenong Gao zhengguo zhang Wenhui Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期618-674,共57页
Distinct from"rockingchair"lithium-ion batteries(LIBs),the unique anionic intercalation chemistry on the cathode side of dual-ion batteries(DIBs)endows them with intrinsic advantages of low cost,high voltage... Distinct from"rockingchair"lithium-ion batteries(LIBs),the unique anionic intercalation chemistry on the cathode side of dual-ion batteries(DIBs)endows them with intrinsic advantages of low cost,high voltage,and ecofriendly,which is attracting widespread attention,and is expected to achieve the next generation of large-scale energy storage applications.Although the electrochemical reactions on the anode side of DIBs are similar to that of LIBs,in fact,to match the rapid insertion kinetics of anions on the cathode side and consider the compatibility with electrolyte system which also serves as an active material,the anode materials play a very important role,and there is an urgent demand for rational structural design and performance optimization.A review and summarization of previous studies will facilitate the exploration and optimization of DIBs in the future.Here,we summarize the development process and working mechanism of DIBs and exhaustively categorize the latest research of DIBs anode materials and their applications in different battery systems.Moreover,the structural design,reaction mechanism and electrochemical performance of anode materials are briefly discussed.Finally,the fundamental challenges,potential strategies and perspectives are also put forward.It is hoped that this review could shed some light for researchers to explore more superior anode materials and advanced systems to further promote the development of DIBs. 展开更多
关键词 Dual-ion batteries ANODE Carbonaceous materials Metallic materials Organic materials Optimization strategies
在线阅读 下载PDF
Improved crystallinity and self-healing effects in perovskite solar cells via functional incorporation of polyvinylpyrrolidone 被引量:2
3
作者 Yunjuan Niu Dingchao He +4 位作者 zhengguo zhang Jun Zhu Tulloch Gavin Polycarpos Falaras Linhua Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期12-18,共7页
Air moisture is the key issue for perovskites which invades the films and accelerates the damage of devices. Here, polyvinylpyrrolidone(PVP) is introduced to the methylammonium lead iodide(MAPbI_(3)) perovskite precur... Air moisture is the key issue for perovskites which invades the films and accelerates the damage of devices. Here, polyvinylpyrrolidone(PVP) is introduced to the methylammonium lead iodide(MAPbI_(3)) perovskite precursor to control crystal growth and endow the devices with self-healing ability in a moisture environment. The strong C=O...ΗAΝ hydrogen bonding interactions between PVP and MAPbI_(3) was confirmed by nuclear magnetic resonance measurements. By introducing hydrogen bonding in the MAPbI_(3)-based PSCs, we form a compact perovskite film of excellent electronic quality with a power conversion efficiency(PCE) of up to 20.32%. Furthermore, the O...ΗAΝ hydrogen bonding interactions at the grain boundaries suppress the decomposition of methylammonium cations and improve the recyclable dissolution–recrystallization of perovskite. As a result, the MAPbI_(3)-PVP based cells exhibited striking moisture stability and self-healing behavior, with negligible decay in efficiency after 500 h of operation in high humidity(65% ± 5% relative humidity) and rapid recovering ability after their removal from the humid environment. 展开更多
关键词 Perovskite solar cells SELF-HEALING Carbonyl groups Hydrogen bonding
在线阅读 下载PDF
200-nm long TiO_2 nanorod arrays for efficient solid-state Pb S quantum dot-sensitized solar cellsR 被引量:1
4
作者 zhengguo zhang Chengwu Shi +3 位作者 Kai Lv Chengfeng Ma Guannan Xiao Lingling Ni 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1214-1218,共5页
To ensure the infiltration of spiro-OMeTAD into the quantum dot-sensitized photoanode and to consider the limit of the hole diffusion length in the spiro-OMeTAD layer, a rutile TiO2 nanorod array with a length of 200 ... To ensure the infiltration of spiro-OMeTAD into the quantum dot-sensitized photoanode and to consider the limit of the hole diffusion length in the spiro-OMeTAD layer, a rutile TiO2 nanorod array with a length of 200 nm, a diameter of 20 nm and an areal density of 720 ram 2 was successfully prepared using a hydrothermal method with an aqueous-grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 ℃ for 75 min. PbS quantum dots were deposited by a spin coating-assisted successive ionic layer adsorption and reaction (spin-SILAR), and all solid-state PbS quantum dot-sensitized TiO2 nanorod array solar cells were fabricated using spiro-OMeTAD as electrolytes. The results revealed that the average crystal size of PbS quantum dots was -78 nm using Pb(NO3)2 as the lead source and remain unchanged with the increase of the number of spin-SILAR cycles. The all solid-state PbS quantum dot-sensitized TiO2 nanorod array solar cells with spin-SILAR cycle numbers of 20, 30 and 40 achieved the photoelectric conversion efficiencies of 3.74%, 4.12% and 3.11%, respectively, under AM 1.5 G illumination (100 mW/cm2). 展开更多
关键词 TiO2 nanomd array PbS quantum dot Spiro-OMeTAD All solid-state sensitized solar cell
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部