目的比较单孔胸腔镜手术(uniportal VATS)与单操作孔胸腔镜手术(single utility port VATS)治疗自发性气胸的疗效。方法回顾性收集2013年1月-2015年12月收治自发性气胸行uniportal VATS治疗的53例患者作为实验组,对照同期53例行single u...目的比较单孔胸腔镜手术(uniportal VATS)与单操作孔胸腔镜手术(single utility port VATS)治疗自发性气胸的疗效。方法回顾性收集2013年1月-2015年12月收治自发性气胸行uniportal VATS治疗的53例患者作为实验组,对照同期53例行single utility port VATS治疗的患者作为对照组,比较两组的手术时间、术中出血量、胸管放置时间、术后住院时间、术后疼痛、术后并发症及远期复发等临床指标。结果 106例患者均顺利完成手术,无死亡及严重并发症发生。实验组和对照组比较,术后24 h疼痛视觉模拟评分(VAS)为(2.60±0.71)vs(3.38±0.84),术后72 h VAS为(1.30±0.51)vs(1.58±0.62),实验组较对照组术后24和72 h疼痛减轻(P<0.05)。两组患者手术时间、术中出血、胸管引流时间、术后住院时间、手术费用和术后并发症的差异均无统计学意义(P>0.05)。随访时间5~36个月,平均19个月,术后无气胸复发。结论单孔胸腔镜治疗自发性气胸与单操作孔两种方法同样安全有效,但单孔法术后疼痛程度更轻,近期疗效满意,值得进一步临床推广。展开更多
In this study,uniaxial and triaxial compression acoustic emission(AE)tests were implemented to investigate the AE effect and failure characteristics of sandstone under different confining pressures(σ3).The evolution ...In this study,uniaxial and triaxial compression acoustic emission(AE)tests were implemented to investigate the AE effect and failure characteristics of sandstone under different confining pressures(σ3).The evolution of AE parameters in the rock failure process and fracture fractal dimension characteristics after failure were analyzed.The results revealed that the activity of the AE signal is strongly related toσ3.The evolution of the Ib value can be divided into the I-fluctuation,II-stability,and III-decrease stages.In the first stage,the Ib value of the AE was relatively high,and the AE energy was low.Then,the Ib value tended to be stable;however,the fluctuation amplitude decreased,and the AE energy rapidly increased.In the stage of decrease,the AE energy sharply increased before the load approached the peak value,and the Ib value significantly decreased and dropped to the lowest point before the peak value.Asσ3 increased,the rock’s failure mode changed from tensile failure to shear failure and became more coordinated.As the confining pressure increased,the shape dimension decreased,and the order degree of rock failure increased.The confining pressure exerted a certain control effect on the rock failure.展开更多
The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite fo...The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation.All-solid-state lithium-sulfur batteries have been proposed to solve the shuttle effect and prevent short circuits.However,solid-solid contacts between the electrodes and the electrolyte increase the interface resistance and stress/strain,which could result in the limited electrochemical performances.In this work,the cathode of all-solid-state lithium-sulfur batteries is prepared by depositing sulfur on the surface of the carbon nanotubes(CNTs@S)and further mixing with Li10GeP2S12 electrolyte and acetylene black agents.At 60℃,CNTs@S electrode exhibits superior electrochemical performance,delivering the reversible discharge capacities of 1193.3,959.5,813.1,569.6 and 395.5 mAhg^-1 at the rate of 0.1,0.5,1,2 and 5 C,respectively.Moreover,the CNTs@S is able to demonstrate superior high-rate capability of 660.3 mAhg^-1 and cycling stability of 400 cycles at a high rate of 1.0 C.Such uniform distribution of the CNTs,S and Li10GeP2S12 electrolyte increase the electronic and ionic conductivity between the cathode and the electrolyte hence improves the rate performance and capacity retention.展开更多
With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inr...With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inrush in the Benxi Formation limestone and Ordovician limestone.The existing prediction models for the water burst at the bottom of the coal seam are less accurate than expected owing to various controlling factors and their intrinsic links.By analyzing the hydrogeological exploration data of the Baodian lower seam and combining the results of the water inrush coefficient method and the Yanzhou mine pressure seepage test,an evaluation model of the seepage barrier capacity of the fault was established.The evaluation results show the water of the underlying limestone aquifer in the Baodian mine area mainly threatens the lower coal mining through the fault fracture zone.The security of mining above confined aquifer in the Baodian mine area gradually decreases from southwest to northeast.By comparing the water inrush coefficient method and the evaluation model of fault impermeability,the results show the evaluation model based on seepage barrier conditions is closer to the actual situation when analyzing the water breakout situation at the working face.展开更多
Light confinement induced by spontaneous near-surface resonance is inherently determined by the location and geometry of metallic nanostructures(NSs),offering a facile and effective approach to break through the limit...Light confinement induced by spontaneous near-surface resonance is inherently determined by the location and geometry of metallic nanostructures(NSs),offering a facile and effective approach to break through the limitation of the light-mater interaction within the photoactive layers.Here,we demonstrate high-performance Al NS/ZnO quantum dots(Al/ZnO) heterostructure UV photodetectors with controllable morphologies of the self-assembled Al NSs.The Al/ZnO heterostructures exhibit a superior light utilization than the ZnO/Al heterostructures,and a strong morphological dependence of the Al NSs on the optical properties of the heterostructures.The inter-diffusion of Al atoms into ZnO matrixes is of a great benefit for the carrier transportation.Consequently,the optimal photocurrent of the Al/ZnO heterostructure photodetectors is significantly increased by 275 times to ~1.065 mA compared to that of the pristine ZnO device,and an outstanding photoresponsivity of 11.98 A W-1 is correspondingly achieved under 6.9 MW cm-2 UV light illumination at 10 V bias.In addition,a relatively fast response is similarly witnessed with the Al/ZnO devices,paving a path to fabricate the high-performance UV photodetectors for applications.展开更多
Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidat...Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidation and steam-air-stepwise-oxidation, were applied to investigate the recovery behaviors of the lattice oxygen in the oxygen carrier. The characterizations of the oxide were determined by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), hydrogen temperature-programmed reduction(H-TPR) and scanning electron microscopy(SEM). The fresh sample LSFCO exhibits a monocrystalline perovskite structure with cubic symmetry and high crystallinity, except for a little impurity phase due to the antisite defect of Fe/Co disorder. The deconvolution distribution of XPS patterns indicated that Co,and Fe are predominantly in an oxidized state(Feand Fe) and(Coand Co), while O 1s exists at three species of lattice oxygen, chemisorbed oxygen and physical adsorbed oxygen. The double perovskite structure and chemical composition recover to the original state after the steam and air oxidation, while the Co ion cannot incorporate into the double perovskite structure and thus form the CoO just via individual steam oxidation. In comparison to the two different oxidation routes, the sample obtained by steam-oxidation exhibits even higher CHconversion, CO and Hselectivity and stronger hydrogen generation capacity.展开更多
Various solid electrolytes,such as sulfides(10^-3-10^-2 S cm^-1)and oxides(10^-4–10^-3 S cm^-1)are explored and developed to solve the safety problems in commercial Li-ion batteries using liquid flammable electrolyte...Various solid electrolytes,such as sulfides(10^-3-10^-2 S cm^-1)and oxides(10^-4–10^-3 S cm^-1)are explored and developed to solve the safety problems in commercial Li-ion batteries using liquid flammable electrolytes.Metallic Li anode is required for pursuing high power density(>300 Wh kg^-1)for solid-state batteries[1,2].展开更多
Microsporogenesis and flower development in Eucalyptus urophylla × E. grandis were examined using chromosome tableting to provide a method to predict the meiotic stages in this species. Although microsporogenesis...Microsporogenesis and flower development in Eucalyptus urophylla × E. grandis were examined using chromosome tableting to provide a method to predict the meiotic stages in this species. Although microsporogenesis was normal, cytokinesis during meiosis of pollen mother cells occurred simultaneously, with strong asynchronism observed in the two different lengths of stamens in a flower bud. In a single flower, the developmental period of microsporogenesis in anthers on the longer stamens was always ahead of those on the shorter stamens. Flower development was also asynchronous at different locations on a branch. Flower buds on the upper side of the branch were larger in diameter than those on the lower side. In addition, a correlation was observed between microsporogenesis development and flower bud diameter growth. The pachy- tene stage was first observed when the diameter of the flower buds increased to 3.0 mm, and the majority of the meiotic stages were observed when bud diameters ranged from 3.5 to 5.0 mm. This study showed that the developmental stages of microsporogenesis in Eucalyptus urophylla × E. grandis could be distinguished readily, which may be applicable to future breeding studies.展开更多
A novel efficient partial sharing channelization structure with odd and even stacking is designed and implemented. There are two special designs in the proposed structure. Firstly, by the intensive channel overlap des...A novel efficient partial sharing channelization structure with odd and even stacking is designed and implemented. There are two special designs in the proposed structure. Firstly, by the intensive channel overlap design, for non-cooperative wideband signals, the proposed structure can achieve good parameter estimation accuracy and high probability of complete interception.Secondly, based on the partial sharing design developed in this paper, the computation burden of the proposed structure can be greatly reduced compared with the traditional directly implemented structures. Experiments and numerical simulations are conducted to evaluate the proposed structure, which shows its improvements over traditional methods in terms of field programmable gate arrays(FPGA) resource consumption and parameter estimation accuracy.展开更多
Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.S...Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.Spinel nickel ferrite(NiFe2O4) was prepared and its multi-cycle performance as an oxygen carrier for CLDR was experimentally investigated.X-ray diffraction(XRD) and Laser Raman spectroscopy showed that a pure spinel crystalline phase(NiFe2O4) was obtained by a parallel flow co-precipitating method.NiFe2O4was reduced into Fe-Ni alloy and wustite(FexO) during the CH4 reduction process.Subsequent oxidation of the reduced oxygen carrier was performed with CO2 as an oxidant to form an intermediate state:a mixture of spinel Ni(1-x)Fe(2+x)O4,Fe(2+y)O4 and metallic Ni.And CO was generated in parallel during this stage.Approximate 185 mL of CO was generated for 1 g spinel NiFe2O4 in a single cycle.The intermediate oxygen carrier was fully oxidized in the air oxidation stage to form a mixture of Ni(1+x)Fe(2-x)O4 and Fe2O3.Although the original state of oxygen carrier(NiFe2O4) was not fully regenerated and agglomeration was observed,a good recyclability was shown in 10 successive redox cycles.展开更多
To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the ...To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the corresponding optimization solver algorithms converge slowly,which highly demand on computing and memory resources.To overcome the challenges,we propose a distributed computing framework for L-BFGS optimization algorithm based on variance reduction method,which is a lightweight,few additional cost and parallelized scheme for the model training process.To validate the claims,we have conducted several experiments on multiple classical datasets.Results show that our proposed computing framework can steadily accelerate the training process of solver in either local mode or distributed mode.展开更多
文摘目的比较单孔胸腔镜手术(uniportal VATS)与单操作孔胸腔镜手术(single utility port VATS)治疗自发性气胸的疗效。方法回顾性收集2013年1月-2015年12月收治自发性气胸行uniportal VATS治疗的53例患者作为实验组,对照同期53例行single utility port VATS治疗的患者作为对照组,比较两组的手术时间、术中出血量、胸管放置时间、术后住院时间、术后疼痛、术后并发症及远期复发等临床指标。结果 106例患者均顺利完成手术,无死亡及严重并发症发生。实验组和对照组比较,术后24 h疼痛视觉模拟评分(VAS)为(2.60±0.71)vs(3.38±0.84),术后72 h VAS为(1.30±0.51)vs(1.58±0.62),实验组较对照组术后24和72 h疼痛减轻(P<0.05)。两组患者手术时间、术中出血、胸管引流时间、术后住院时间、手术费用和术后并发症的差异均无统计学意义(P>0.05)。随访时间5~36个月,平均19个月,术后无气胸复发。结论单孔胸腔镜治疗自发性气胸与单操作孔两种方法同样安全有效,但单孔法术后疼痛程度更轻,近期疗效满意,值得进一步临床推广。
基金the financial s upport from the National Natural Science Foundation of China(No.41702326)the Jiangxi Provincial Natural Science Foundation(No.20202ACB214006)+2 种基金the Innovative Experts,Long-term Program of Jiangxi Province(jxsq2018106049)the Supported by Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technologythe Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2020-S451)。
文摘In this study,uniaxial and triaxial compression acoustic emission(AE)tests were implemented to investigate the AE effect and failure characteristics of sandstone under different confining pressures(σ3).The evolution of AE parameters in the rock failure process and fracture fractal dimension characteristics after failure were analyzed.The results revealed that the activity of the AE signal is strongly related toσ3.The evolution of the Ib value can be divided into the I-fluctuation,II-stability,and III-decrease stages.In the first stage,the Ib value of the AE was relatively high,and the AE energy was low.Then,the Ib value tended to be stable;however,the fluctuation amplitude decreased,and the AE energy rapidly increased.In the stage of decrease,the AE energy sharply increased before the load approached the peak value,and the Ib value significantly decreased and dropped to the lowest point before the peak value.Asσ3 increased,the rock’s failure mode changed from tensile failure to shear failure and became more coordinated.As the confining pressure increased,the shape dimension decreased,and the order degree of rock failure increased.The confining pressure exerted a certain control effect on the rock failure.
基金supported by the National Key R&D Program of China (Grant no. 2016YFB0100105)the National Natural Science Foundation of China (Grant no. 51872303)+1 种基金Zhejiang Provincial Natural Science Foundation of China (Grant no. LD18E020004, LQ16E020003, LY18E020018, LY18E030011)Youth Innovation Promotion Association CAS (2017342)
文摘The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation.All-solid-state lithium-sulfur batteries have been proposed to solve the shuttle effect and prevent short circuits.However,solid-solid contacts between the electrodes and the electrolyte increase the interface resistance and stress/strain,which could result in the limited electrochemical performances.In this work,the cathode of all-solid-state lithium-sulfur batteries is prepared by depositing sulfur on the surface of the carbon nanotubes(CNTs@S)and further mixing with Li10GeP2S12 electrolyte and acetylene black agents.At 60℃,CNTs@S electrode exhibits superior electrochemical performance,delivering the reversible discharge capacities of 1193.3,959.5,813.1,569.6 and 395.5 mAhg^-1 at the rate of 0.1,0.5,1,2 and 5 C,respectively.Moreover,the CNTs@S is able to demonstrate superior high-rate capability of 660.3 mAhg^-1 and cycling stability of 400 cycles at a high rate of 1.0 C.Such uniform distribution of the CNTs,S and Li10GeP2S12 electrolyte increase the electronic and ionic conductivity between the cathode and the electrolyte hence improves the rate performance and capacity retention.
基金financial support from the National Natural Science Foundation of China(No.41702326)the Jiangxi Provincial Natural Science Foundation(No.20202ACB214006)+2 种基金the Innovative Experts,Long-term Program of Jiangxi Province(No.jxsq2018106049)the Supported by Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technologythe Innovation Fund Designated for Graduate Students of Jiangxi Province(No.YC2020-S451)。
文摘With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inrush in the Benxi Formation limestone and Ordovician limestone.The existing prediction models for the water burst at the bottom of the coal seam are less accurate than expected owing to various controlling factors and their intrinsic links.By analyzing the hydrogeological exploration data of the Baodian lower seam and combining the results of the water inrush coefficient method and the Yanzhou mine pressure seepage test,an evaluation model of the seepage barrier capacity of the fault was established.The evaluation results show the water of the underlying limestone aquifer in the Baodian mine area mainly threatens the lower coal mining through the fault fracture zone.The security of mining above confined aquifer in the Baodian mine area gradually decreases from southwest to northeast.By comparing the water inrush coefficient method and the evaluation model of fault impermeability,the results show the evaluation model based on seepage barrier conditions is closer to the actual situation when analyzing the water breakout situation at the working face.
基金the National Natural Science Foundation of China(Grant Nos.61705070 and 61974052)China Postdoctoral Science Foundation(Grant Nos.2019M662594)National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIP)(Nos.NRF2019R1A2C4069438 and NRF2018R1A6A1A03025242)。
文摘Light confinement induced by spontaneous near-surface resonance is inherently determined by the location and geometry of metallic nanostructures(NSs),offering a facile and effective approach to break through the limitation of the light-mater interaction within the photoactive layers.Here,we demonstrate high-performance Al NS/ZnO quantum dots(Al/ZnO) heterostructure UV photodetectors with controllable morphologies of the self-assembled Al NSs.The Al/ZnO heterostructures exhibit a superior light utilization than the ZnO/Al heterostructures,and a strong morphological dependence of the Al NSs on the optical properties of the heterostructures.The inter-diffusion of Al atoms into ZnO matrixes is of a great benefit for the carrier transportation.Consequently,the optimal photocurrent of the Al/ZnO heterostructure photodetectors is significantly increased by 275 times to ~1.065 mA compared to that of the pristine ZnO device,and an outstanding photoresponsivity of 11.98 A W-1 is correspondingly achieved under 6.9 MW cm-2 UV light illumination at 10 V bias.In addition,a relatively fast response is similarly witnessed with the Al/ZnO devices,paving a path to fabricate the high-performance UV photodetectors for applications.
基金The financial support of the National Natural Science Foundation of China(51406208,51406214)supported by the Science&Technology Research Project of Guangdong Province(2015A010106009)the support of Key Laboratory of Renewable Energy,Chinese Academy of Sciences(Y607j51001)
文摘Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidation and steam-air-stepwise-oxidation, were applied to investigate the recovery behaviors of the lattice oxygen in the oxygen carrier. The characterizations of the oxide were determined by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), hydrogen temperature-programmed reduction(H-TPR) and scanning electron microscopy(SEM). The fresh sample LSFCO exhibits a monocrystalline perovskite structure with cubic symmetry and high crystallinity, except for a little impurity phase due to the antisite defect of Fe/Co disorder. The deconvolution distribution of XPS patterns indicated that Co,and Fe are predominantly in an oxidized state(Feand Fe) and(Coand Co), while O 1s exists at three species of lattice oxygen, chemisorbed oxygen and physical adsorbed oxygen. The double perovskite structure and chemical composition recover to the original state after the steam and air oxidation, while the Co ion cannot incorporate into the double perovskite structure and thus form the CoO just via individual steam oxidation. In comparison to the two different oxidation routes, the sample obtained by steam-oxidation exhibits even higher CHconversion, CO and Hselectivity and stronger hydrogen generation capacity.
基金financially supported by Ganfeng Lithium Co., Ltd.
文摘Various solid electrolytes,such as sulfides(10^-3-10^-2 S cm^-1)and oxides(10^-4–10^-3 S cm^-1)are explored and developed to solve the safety problems in commercial Li-ion batteries using liquid flammable electrolytes.Metallic Li anode is required for pursuing high power density(>300 Wh kg^-1)for solid-state batteries[1,2].
基金financially supported by the Special Fund for Forest Scientific Research in the Public Welfare(201404113)the 111 Project(B13007)the Program for Changjiang Scholars and Innovative Research Team in University(IRT13047)
文摘Microsporogenesis and flower development in Eucalyptus urophylla × E. grandis were examined using chromosome tableting to provide a method to predict the meiotic stages in this species. Although microsporogenesis was normal, cytokinesis during meiosis of pollen mother cells occurred simultaneously, with strong asynchronism observed in the two different lengths of stamens in a flower bud. In a single flower, the developmental period of microsporogenesis in anthers on the longer stamens was always ahead of those on the shorter stamens. Flower development was also asynchronous at different locations on a branch. Flower buds on the upper side of the branch were larger in diameter than those on the lower side. In addition, a correlation was observed between microsporogenesis development and flower bud diameter growth. The pachy- tene stage was first observed when the diameter of the flower buds increased to 3.0 mm, and the majority of the meiotic stages were observed when bud diameters ranged from 3.5 to 5.0 mm. This study showed that the developmental stages of microsporogenesis in Eucalyptus urophylla × E. grandis could be distinguished readily, which may be applicable to future breeding studies.
文摘A novel efficient partial sharing channelization structure with odd and even stacking is designed and implemented. There are two special designs in the proposed structure. Firstly, by the intensive channel overlap design, for non-cooperative wideband signals, the proposed structure can achieve good parameter estimation accuracy and high probability of complete interception.Secondly, based on the partial sharing design developed in this paper, the computation burden of the proposed structure can be greatly reduced compared with the traditional directly implemented structures. Experiments and numerical simulations are conducted to evaluate the proposed structure, which shows its improvements over traditional methods in terms of field programmable gate arrays(FPGA) resource consumption and parameter estimation accuracy.
基金the financial support by the National Natural Science Foundation of China(51406214 and51406208)supported by the Natural science Foundation of Guangdong Province(2015A030313719)the Science&Technology Research Project of Guangdong Province(2013B050800008)
文摘Chemical looping dry reforming(CLDR) is an innovative technology for CO2 utilization using the chemical looping principle.The CLDR process consists of three stages,i.e.CH4 reduction,CO2 reforming,and air oxidation.Spinel nickel ferrite(NiFe2O4) was prepared and its multi-cycle performance as an oxygen carrier for CLDR was experimentally investigated.X-ray diffraction(XRD) and Laser Raman spectroscopy showed that a pure spinel crystalline phase(NiFe2O4) was obtained by a parallel flow co-precipitating method.NiFe2O4was reduced into Fe-Ni alloy and wustite(FexO) during the CH4 reduction process.Subsequent oxidation of the reduced oxygen carrier was performed with CO2 as an oxidant to form an intermediate state:a mixture of spinel Ni(1-x)Fe(2+x)O4,Fe(2+y)O4 and metallic Ni.And CO was generated in parallel during this stage.Approximate 185 mL of CO was generated for 1 g spinel NiFe2O4 in a single cycle.The intermediate oxygen carrier was fully oxidized in the air oxidation stage to form a mixture of Ni(1+x)Fe(2-x)O4 and Fe2O3.Although the original state of oxygen carrier(NiFe2O4) was not fully regenerated and agglomeration was observed,a good recyclability was shown in 10 successive redox cycles.
基金partly supported by National Key Basic Research Program of China(2016YFB1000100)partly supported by National Natural Science Foundation of China(NO.61402490)。
文摘To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the corresponding optimization solver algorithms converge slowly,which highly demand on computing and memory resources.To overcome the challenges,we propose a distributed computing framework for L-BFGS optimization algorithm based on variance reduction method,which is a lightweight,few additional cost and parallelized scheme for the model training process.To validate the claims,we have conducted several experiments on multiple classical datasets.Results show that our proposed computing framework can steadily accelerate the training process of solver in either local mode or distributed mode.