期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Accumulated damage failure mechanism of anchoring structures under cyclic impact disturbance
1
作者 Peng Wang Nong Zhang +7 位作者 Jiaguang Kan Qun Wei zhengzheng Xie Aoran Li zhe he Jinghua Qi Xingliang Xu Changrui Duan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第12期1693-1709,共17页
Cyclic impact induces ongoing fatigue damage and performance degradation in anchoring structures,ser-ving as a critical factor leading to the instability of deep roadways.This paper takes the intrinsic spatio-temporal... Cyclic impact induces ongoing fatigue damage and performance degradation in anchoring structures,ser-ving as a critical factor leading to the instability of deep roadways.This paper takes the intrinsic spatio-temporal relationship of macro-microscopic cumulative damage in anchoring structures as the main thread,revealing the mechanism of bearing capacity degradation and progressive instability of anchoring structure under cyclic impact.Firstly,a set of impact test devices and methods for the prestressed solid anchor bolt anchoring structure were developed,effectively replicating the cyclic impact stress paths in situ.Secondly,cyclic impact anchoring structure tests and simulations were conducted,which clarifies the damage evolution mechanism of the anchoring structure.Prestress loss follows a cubic decay func-tion as the number of impacts increases.Under the same impact energy and pretension force,the impact resistance cycles of extended anchoring and full-length anchoring were increased by 186.7%and 280%,respectively,compared to end anchoring.The rate of internal damage accumulation is positively corre-lated with impact energy and negatively correlated with anchorage length.Internal tensile cracks account for approximately 85%.Stress transmission follows a fluctuating pattern.Compared to the extended anchoring,the maximum vibration velocity of the exposed end particles in the full-length anchoring was reduced by 59.31%.Damage evolution exhibits a pronounced cumulative mutation effect.Then,a three-media,two-interface mechanical model of the anchoring structure was constructed.It has been clarified that the compressive stress,tensile stress,and oscillation effect arising from rapid transi-tions between compression and tension are the primary internal factors responsible for the degradation of the anchoring structure’s bearing capacity.Finally,the progressive instability mechanism of the anchoring structure under cyclic impact was elucidated.The mutual feedback and superposition of media rupture,interface debonding,and bearing capacity degradation result in overall failure.The failure pro-cess involves stages dominated by oscillation-compression,tensile stress,and compression failure.A tar-geted control strategy was further proposed.This provides a reference for maintaining the long-term stability of deep roadways under dynamic impact loads. 展开更多
关键词 Cyclic impact Anchoring structure Cumulative damage Bearing capacity degradation Progressive instability
在线阅读 下载PDF
Optimization and Performance Enhancement of Gesture Recognition Algorithm Based on FMCW Millimeter-Wave Radar
2
作者 zhe he Jinlong Zhou +1 位作者 Decheng Bao Renjing Gao 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期412-421,共10页
Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio... Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems. 展开更多
关键词 gesture recognition biometric filtering frequency-modulated continuous wave(FMCW)millimeter-wave radar feature optimization human-computer interaction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部