In order to obtain good driving performance,a driving force model is presented for non-pneumatic elastic wheel.Brush model of pneumatic tyres is introduced and the deformations of elastic supports and tread are also t...In order to obtain good driving performance,a driving force model is presented for non-pneumatic elastic wheel.Brush model of pneumatic tyres is introduced and the deformations of elastic supports and tread are also taken into account.The longitudinal slip rate is redefined.The grounding pressure distribution of elastic wheels is analyzed and corrected according to speed,temperature and stiffness.Then rolling resistance equation is developed.Finally,simulation is conducted by software CarSim,and the results show that the estimated values are consistent with simulation values,especially at low longitudinal slip rate.The research can help to optimize design of non-pneumatic elastic wheel.展开更多
Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,exper...Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.展开更多
汽车质量与道路坡度是汽车主动安全控制系统的重要参数.提出一种汽车质量与道路坡度串行估计算法.根据汽车质量与道路坡度变化的快慢进行分层串行估计,将缓慢变化的汽车质量作为第一层的估计输出,将快速变化的道路坡度作为第二层的估计...汽车质量与道路坡度是汽车主动安全控制系统的重要参数.提出一种汽车质量与道路坡度串行估计算法.根据汽车质量与道路坡度变化的快慢进行分层串行估计,将缓慢变化的汽车质量作为第一层的估计输出,将快速变化的道路坡度作为第二层的估计输出.基于纵向动力学,首先由轮胎驱动力矩与横摆角速度通过递推最小二乘法(Recursive Least Squares,RLS)算法进行第一层的汽车质量估计;接着将估计得到的汽车质量代入至第二层牛顿迭代法进行道路坡度估计.与传统的自适应估计方法相比,提出的算法可以减少实时估计参数的耦合效应,且不需要额外的传感器;最后通过仿真及模型车辆道路试验对所提出的算法进行验证,仿真及试验结果表明:所提出的辨识算法能够准确实时地估计汽车质量与道路坡度.展开更多
Conventional pneumatic tires exhibit disadvantages such as puncture,blowout at high speed,pressure maintenance,etc.Owing to these structural inevitable weaknesses,non?pneumatic tires have been developed and are invest...Conventional pneumatic tires exhibit disadvantages such as puncture,blowout at high speed,pressure maintenance,etc.Owing to these structural inevitable weaknesses,non?pneumatic tires have been developed and are investigated.A non?pneumatic mechanical elastic wheel(NPMEW)is introduced and investigated as a function of static radical stiffness characteristics and contact behavior.A bench test method is utilized to improve the riding comfort and the traction traffic ability of NPMEW based on tire characteristics test rig,and the static radical stiffness characteristics and the contact behavior of NPMEW are compared with that of an insert supporting run?flat tire(ISRFT).The vertical force?deformation curves and deformed shapes and contact areas of the NPMEW and ISRFT are obtained using a set of vertical loads.The contact behavior is evaluated using extracted geometrical and mechanical feature parameters of the two tires.The results indicate that the NPMEW appears to exhibit considerably high radical stiffness,and the numerical value is dependent on the mechanical characteristic of the flexible tire body and hinge units.NPMEW demonstrates more uniform contact pressure than ISRFT within a certain loading range,and it can efficiently mitigate the problem of stress concentration in ISRFT shoulder under heavy load and enhance the wear resistance and ground grip performances.展开更多
基金supported by the Major Exploration Project of the General Armaments Department of China(NHA13002)the Funding of Jiangsu Innovation Program for Graduate Education+2 种基金the Fundamental Research Funds for the Central Universities of China(CXLX13_145)Jiangsu Province″333 Project″Training Funded Project(BRA2015365)the National Natural Science Foundation of Youth Fund Project(51305175,61503163)
文摘In order to obtain good driving performance,a driving force model is presented for non-pneumatic elastic wheel.Brush model of pneumatic tyres is introduced and the deformations of elastic supports and tread are also taken into account.The longitudinal slip rate is redefined.The grounding pressure distribution of elastic wheels is analyzed and corrected according to speed,temperature and stiffness.Then rolling resistance equation is developed.Finally,simulation is conducted by software CarSim,and the results show that the estimated values are consistent with simulation values,especially at low longitudinal slip rate.The research can help to optimize design of non-pneumatic elastic wheel.
基金supported by the Explore Research Project of the General Armament Department (No. NHA13002)the Fundamental Research Funds for the Central Universities (No.NP2016412)the National Natural Science Foundation of China(No.51505261)
文摘Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.
文摘汽车质量与道路坡度是汽车主动安全控制系统的重要参数.提出一种汽车质量与道路坡度串行估计算法.根据汽车质量与道路坡度变化的快慢进行分层串行估计,将缓慢变化的汽车质量作为第一层的估计输出,将快速变化的道路坡度作为第二层的估计输出.基于纵向动力学,首先由轮胎驱动力矩与横摆角速度通过递推最小二乘法(Recursive Least Squares,RLS)算法进行第一层的汽车质量估计;接着将估计得到的汽车质量代入至第二层牛顿迭代法进行道路坡度估计.与传统的自适应估计方法相比,提出的算法可以减少实时估计参数的耦合效应,且不需要额外的传感器;最后通过仿真及模型车辆道路试验对所提出的算法进行验证,仿真及试验结果表明:所提出的辨识算法能够准确实时地估计汽车质量与道路坡度.
基金supported in part by the National Natural Science Foundations of China (Nos.51605215, 11672127)the National Science Foundations for Post-Doctoral Scientists of China (Nos.2018M630593, 2019T120450)+1 种基金Research Foundations of Nanjing Institute of Technology (Nos. QKJ201707, PTKJ201702)the Qing Lan Project
文摘Conventional pneumatic tires exhibit disadvantages such as puncture,blowout at high speed,pressure maintenance,etc.Owing to these structural inevitable weaknesses,non?pneumatic tires have been developed and are investigated.A non?pneumatic mechanical elastic wheel(NPMEW)is introduced and investigated as a function of static radical stiffness characteristics and contact behavior.A bench test method is utilized to improve the riding comfort and the traction traffic ability of NPMEW based on tire characteristics test rig,and the static radical stiffness characteristics and the contact behavior of NPMEW are compared with that of an insert supporting run?flat tire(ISRFT).The vertical force?deformation curves and deformed shapes and contact areas of the NPMEW and ISRFT are obtained using a set of vertical loads.The contact behavior is evaluated using extracted geometrical and mechanical feature parameters of the two tires.The results indicate that the NPMEW appears to exhibit considerably high radical stiffness,and the numerical value is dependent on the mechanical characteristic of the flexible tire body and hinge units.NPMEW demonstrates more uniform contact pressure than ISRFT within a certain loading range,and it can efficiently mitigate the problem of stress concentration in ISRFT shoulder under heavy load and enhance the wear resistance and ground grip performances.