Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4...Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4) nanosheet is synthesized by hydrothermal method as an efficient photocatalyst for the decomposition of H2S.In addition to the characterization of the morphology and structure,chemical state,optical and electrochemical performances of S,N-CDs/g-C3N4,hydrogen evolution tests show that the activity of g-C3N4 is improved by introducing S,N-CDs,and the enhancement depends strongly on the wavelength of incident light.The photocatalytic hydrogen production rate of S,N-CDs/g-C3N4 composite reaches 832 μmol g-1h-1, which is 38 times to that of g-C3N4 under irradiation at 460 nm.Density functional theory calculations and electron paramagnetic resonance as well as photoluminescence technologies have altogether authenticated that the unique wavelength-dependent photosensitization of S,N-CDs on g-C3N4;meanwhile,a good match between the energy level of S,N-CDs and g-C3N4 is pivotal for the effective photocatalytic activity.Our work has unveiled the detailed mechanism of the photocatalytic activity enhancement in S,N-CDs/g-C3N4 composite and showed its potential in photocatalytic splitting of H2S for hydrogen evolution.展开更多
基金financial support from the National Natural Science Foundation of China (U1862111 and 21702213)Cheung Kong Scholars Programme of China+3 种基金Chinese Academic of Science “light of west China” ProgramProvincial International Cooperation Project 2020YFH0118, Sichuan, ChinaOpen Fund (PLN201802 and 201928) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)Open Fund of State Key Laboratory of Industrial Vent Gas Reuse (SKLIVGR-SWPU-2020-05)。
文摘Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4) nanosheet is synthesized by hydrothermal method as an efficient photocatalyst for the decomposition of H2S.In addition to the characterization of the morphology and structure,chemical state,optical and electrochemical performances of S,N-CDs/g-C3N4,hydrogen evolution tests show that the activity of g-C3N4 is improved by introducing S,N-CDs,and the enhancement depends strongly on the wavelength of incident light.The photocatalytic hydrogen production rate of S,N-CDs/g-C3N4 composite reaches 832 μmol g-1h-1, which is 38 times to that of g-C3N4 under irradiation at 460 nm.Density functional theory calculations and electron paramagnetic resonance as well as photoluminescence technologies have altogether authenticated that the unique wavelength-dependent photosensitization of S,N-CDs on g-C3N4;meanwhile,a good match between the energy level of S,N-CDs and g-C3N4 is pivotal for the effective photocatalytic activity.Our work has unveiled the detailed mechanism of the photocatalytic activity enhancement in S,N-CDs/g-C3N4 composite and showed its potential in photocatalytic splitting of H2S for hydrogen evolution.