针对基于深度学习的水印方法未充分突显图像的关键特征,以及未有效利用中间卷积层输出特征的问题,为提升含水印图像的视觉质量和抵抗噪声攻击的能力,提出一种融合注意力机制和多尺度特征的图像水印方法。在编码器部分,设计注意力模块关...针对基于深度学习的水印方法未充分突显图像的关键特征,以及未有效利用中间卷积层输出特征的问题,为提升含水印图像的视觉质量和抵抗噪声攻击的能力,提出一种融合注意力机制和多尺度特征的图像水印方法。在编码器部分,设计注意力模块关注重要图像特征,以减小水印嵌入引起的图像失真;在解码器部分,设计多尺度特征提取模块,以捕获不同层次的图像细节。实验结果表明,在COCO数据集上与深度水印模型HiDDeN(Hiding Data with Deep Networks)相比,所提方法生成的含水印图像的峰值信噪比(PSNR)和结构相似度(SSIM)分别增加了11.63%和1.29%;所提方法针对dropout、cropout、crop、高斯模糊和JPEG压缩的水印提取平均误比特率(BER)降低了53.85%;此外,消融实验结果验证了添加注意力模块和多尺度特征提取模块的方法有更好的不可见性和鲁棒性。展开更多
针对长短码直接扩频序列(long and short code direct sequence spread spectrum, LSC-DSSS)信号序列估计难题,在已知LSC-DSSS信号参数的条件下,提出一种基于新信息准则(novel information criterion, NIC)神经网络联合梅西算法的长短...针对长短码直接扩频序列(long and short code direct sequence spread spectrum, LSC-DSSS)信号序列估计难题,在已知LSC-DSSS信号参数的条件下,提出一种基于新信息准则(novel information criterion, NIC)神经网络联合梅西算法的长短码信号序列估计方法。将LSC-DSSS信号输入NIC神经网络以估计随机采样起点,再通过不断输入数据训练NIC神经网络权值向量。当网络收敛时,权值向量的符号值即为LSC-DSSS信号的复合码序列片段。使用延迟相乘,消除幅度模糊与短扩频码序列的影响,再利用梅西算法获得扰码序列的生成多项式。仿真实验结果表明,NIC神经网络较特征值分解法的抗噪声性能提高6 dB,同时较Hebbian准则神经网络所需学习组数减少50%。展开更多
文摘针对基于深度学习的水印方法未充分突显图像的关键特征,以及未有效利用中间卷积层输出特征的问题,为提升含水印图像的视觉质量和抵抗噪声攻击的能力,提出一种融合注意力机制和多尺度特征的图像水印方法。在编码器部分,设计注意力模块关注重要图像特征,以减小水印嵌入引起的图像失真;在解码器部分,设计多尺度特征提取模块,以捕获不同层次的图像细节。实验结果表明,在COCO数据集上与深度水印模型HiDDeN(Hiding Data with Deep Networks)相比,所提方法生成的含水印图像的峰值信噪比(PSNR)和结构相似度(SSIM)分别增加了11.63%和1.29%;所提方法针对dropout、cropout、crop、高斯模糊和JPEG压缩的水印提取平均误比特率(BER)降低了53.85%;此外,消融实验结果验证了添加注意力模块和多尺度特征提取模块的方法有更好的不可见性和鲁棒性。
文摘针对长短码直接扩频序列(long and short code direct sequence spread spectrum, LSC-DSSS)信号序列估计难题,在已知LSC-DSSS信号参数的条件下,提出一种基于新信息准则(novel information criterion, NIC)神经网络联合梅西算法的长短码信号序列估计方法。将LSC-DSSS信号输入NIC神经网络以估计随机采样起点,再通过不断输入数据训练NIC神经网络权值向量。当网络收敛时,权值向量的符号值即为LSC-DSSS信号的复合码序列片段。使用延迟相乘,消除幅度模糊与短扩频码序列的影响,再利用梅西算法获得扰码序列的生成多项式。仿真实验结果表明,NIC神经网络较特征值分解法的抗噪声性能提高6 dB,同时较Hebbian准则神经网络所需学习组数减少50%。