Polygonisation is a common nonuniform wear phenomenon occurring in railway vehicle wheels and has a severe impact on the vehicle–track system,ride comfort,and lineside residents.This paper first summarizes periodic d...Polygonisation is a common nonuniform wear phenomenon occurring in railway vehicle wheels and has a severe impact on the vehicle–track system,ride comfort,and lineside residents.This paper first summarizes periodic defects of the wheels,including wheel polygonisation and wheel corrugation,occurring in railways worldwide.Thereafter,the effects of wheel polygonisation on the wheel–rail interaction,noise and vibration,and fatigue failure of the vehicle and track components are reviewed.Based on the different causes,the formation mechanisms of periodic wheel defects are classified into three categories:(1)initial defects of wheels,(2)natural vibration of the vehicle–track system,and(3)thermoelastic instability.In addition,the simulation methods of wheel polygonisation evolution and countermeasures to mitigate wheel polygonisation are presented.Emphasis is given to the characteristics,effects,causes,and solutions of wheel polygonisation in metro vehicles,locomotives,and highspeed trains in China.Finally,the guidance is provided on further understanding the formation mechanisms,monitoring technology,and maintenance criterion of wheel polygonisation.展开更多
The present paper reviews the vibro-acoustic modelling of extruded aluminium train floor structures including the state-of-the-art of its industrial applications, as well as the most recent developments on mid-frequen...The present paper reviews the vibro-acoustic modelling of extruded aluminium train floor structures including the state-of-the-art of its industrial applications, as well as the most recent developments on mid-frequency mod- elling techniques in general. With the common purpose to predict mid-frequency vibro-acoustic responses of stiffened panel structures to an acceptable accuracy at a reasonable computational cost, relevant techniques are mainly based on one of the following three types of mid-frequency vibro- acoustic modelling principles: (1) enhanced deterministic methods, (2) enhanced statistical methods, and (3) hybrid deterministic/statistical methods. It is shown that, although recent developments have led to a significant step forward in industrial applicability, mature and adequate prediction tech- niques, however, are still very much required for solving sound transmission through, and radiation from, extruded aluminium panels used on high-speed trains. Due to their great potentials for predicting mid-frequency vibro-acoustics of stiffened panel structures, two of recently developed mid-frequency modelling approaches, i.e. the so-called hybrid finite element-statistical energy analysis (FE-SEA) and hybrid wave-based method- statistical energy analysis (WBM-SEA), are then recapitulated.展开更多
The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This p...The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This paper reviews the existing approaches to predict RCF crack initiation.The crack initiation region is predicted by the shakedown map.By combining the shakedown map with various initiation criteria and the critical plane method,the crack initiation life is calculated.The classification,methodologies,theories and applications of these approaches are included in this paper.The advantages and limitations of these methods are analyzed to provide recommendation for RCF crack initiation prediction.This review highlights that wheel/rail dynamic characteristic,complex working conditions,surface defects and wear all affect the RCF crack initiation.The optimal selection of criteria is essential in the crack initiation prediction.Based on the research gap regarding the challenging process of crack initiation prediction detailed in this review,a proposed prediction process of RCF crack initiation is proposed to achieve a more accurate result.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51875484,U1734201,51805450,51775455,U1434201 and 51475390)the Science and Technology Program of Sichuan Province of China(Grant No.2020YFQ0024)+1 种基金the Scientific Research Foundation of the State Key Laboratory of Traction Power of Southwest Jiaotong University(Grant Nos.2020TPL-T03 and 2020TPL-T12)China Postdoctoral Science Foundation(Grant No.2020M673281).
文摘Polygonisation is a common nonuniform wear phenomenon occurring in railway vehicle wheels and has a severe impact on the vehicle–track system,ride comfort,and lineside residents.This paper first summarizes periodic defects of the wheels,including wheel polygonisation and wheel corrugation,occurring in railways worldwide.Thereafter,the effects of wheel polygonisation on the wheel–rail interaction,noise and vibration,and fatigue failure of the vehicle and track components are reviewed.Based on the different causes,the formation mechanisms of periodic wheel defects are classified into three categories:(1)initial defects of wheels,(2)natural vibration of the vehicle–track system,and(3)thermoelastic instability.In addition,the simulation methods of wheel polygonisation evolution and countermeasures to mitigate wheel polygonisation are presented.Emphasis is given to the characteristics,effects,causes,and solutions of wheel polygonisation in metro vehicles,locomotives,and highspeed trains in China.Finally,the guidance is provided on further understanding the formation mechanisms,monitoring technology,and maintenance criterion of wheel polygonisation.
基金sponsored by the NationalNatural foundation of China(Grant Nos.U1434201 and 51175300)
文摘The present paper reviews the vibro-acoustic modelling of extruded aluminium train floor structures including the state-of-the-art of its industrial applications, as well as the most recent developments on mid-frequency mod- elling techniques in general. With the common purpose to predict mid-frequency vibro-acoustic responses of stiffened panel structures to an acceptable accuracy at a reasonable computational cost, relevant techniques are mainly based on one of the following three types of mid-frequency vibro- acoustic modelling principles: (1) enhanced deterministic methods, (2) enhanced statistical methods, and (3) hybrid deterministic/statistical methods. It is shown that, although recent developments have led to a significant step forward in industrial applicability, mature and adequate prediction tech- niques, however, are still very much required for solving sound transmission through, and radiation from, extruded aluminium panels used on high-speed trains. Due to their great potentials for predicting mid-frequency vibro-acoustics of stiffened panel structures, two of recently developed mid-frequency modelling approaches, i.e. the so-called hybrid finite element-statistical energy analysis (FE-SEA) and hybrid wave-based method- statistical energy analysis (WBM-SEA), are then recapitulated.
基金supported by National Natural Science Foundation of China(Nos.52202510,U21A20167,52272443 and 51975489)Autonomous Research Project of State Key Laboratory(Nos.2020TPL-T10 and 2022TPL-T04)+1 种基金For a scholarship to S.Y.Zhang,under the State Scholarship Fund of the China Scholarship Council(CSC)(No.202007000128)to pursue study in the Central Queensland University as a cotutelle PhD Student.Dr.Qing Wu is the recipient of an Australian Research Council Discovery Early Career Award(Project Number DE210100273)funded by the Australian Government.
文摘The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This paper reviews the existing approaches to predict RCF crack initiation.The crack initiation region is predicted by the shakedown map.By combining the shakedown map with various initiation criteria and the critical plane method,the crack initiation life is calculated.The classification,methodologies,theories and applications of these approaches are included in this paper.The advantages and limitations of these methods are analyzed to provide recommendation for RCF crack initiation prediction.This review highlights that wheel/rail dynamic characteristic,complex working conditions,surface defects and wear all affect the RCF crack initiation.The optimal selection of criteria is essential in the crack initiation prediction.Based on the research gap regarding the challenging process of crack initiation prediction detailed in this review,a proposed prediction process of RCF crack initiation is proposed to achieve a more accurate result.