期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
大尺寸固体氧化物燃料电池的电极过程解析方法 被引量:3
1
作者 崔同慧 李航越 +4 位作者 吕泽伟 王怡戈 韩敏芳 孙再洪 孙凯华 《物理化学学报》 SCIE CAS CSCD 北大核心 2022年第8期42-50,共9页
电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)作为一种原位/非原位的电化学表征技术,在固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)尤其是小尺寸电池的研究中得到了广泛应用,而工业大尺寸电池的EIS研究较少且大多基... 电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)作为一种原位/非原位的电化学表征技术,在固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)尤其是小尺寸电池的研究中得到了广泛应用,而工业大尺寸电池的EIS研究较少且大多基于小尺寸电池的研究结果。本文对工业尺寸(10 cm×10 cm)阳极支撑平板式SOFC搭建了EIS测试系统,并改变电池运行温度、阳极/阴极气体组分,对该电池进行了系统的EIS测试,而后采用不基于先验假设的弛豫时间分布法(Distribution of Relaxation Times,DRT)对EIS数据进行解析。通过比较分析不同条件下的DRT结果,揭示了DRT中各特征峰与电池中具体电极过程的对应关系。与小尺寸电池相比,由于大尺寸电池的有效面积较大且入口流量较小,气体转化过程在大尺寸电池中不容忽视。本文通过解析EIS实现了对工业大尺寸SOFC单电池中各项电极过程的分辨,该方法及结果能够进一步应用于SOFC原位表征、在线监测以及衰减机理等相关研究。 展开更多
关键词 固体氧化物燃料电池 电化学阻抗谱 弛豫时间分布 大尺寸
在线阅读 下载PDF
Prediction of fuel cell performance degradation using a combined approach of machine learning and impedance spectroscopy
2
作者 Zewei Lyu Yige Wang +6 位作者 Anna Sciazko Hangyue Li Yosuke Komatsu zaihong sun Kaihua sun Naoki Shikazono Minfang Han 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期32-41,I0003,共11页
Accurate prediction of performance degradation in complex systems such as solid oxide fuel cells is crucial for expediting technological advancements.However,significant challenges still persist due to limited compreh... Accurate prediction of performance degradation in complex systems such as solid oxide fuel cells is crucial for expediting technological advancements.However,significant challenges still persist due to limited comprehension of degradation mechanisms and difficulties in acquiring in-situ features.In this study,we propose an effective approach that integrates long short-term memory(LSTM) neural network and dynamic electrochemical impedance spectroscopy(DEIS).This integrated approach enables precise prediction of future evolutions in both current-voltage and EIS features using historical testing data,without prior knowledge of degradation mechanisms.For short-term predictions spanning hundreds of hours,our approach achieves a prediction accuracy exceeding 0.99,showcasing promising prospects for diagnostic applications.Additionally,for long-term predictions spanning thousands of hours,we quantitatively determine the significance of each degradation mechanism,which is crucial for enhancing cell durability.Moreover,our proposed approach demonstrates satisfactory predictive ability in both time and frequency domains,offering the potential to reduce EIS testing time by more than half. 展开更多
关键词 Solid oxide fuel cell Performance degradation Electrochemical impedance spectroscopy Longshort-term memory Machine learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部