Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a num...Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a numerical percolation model of random fractured rock of a tunnel underpassing a water reservoir is established to study the seepage characteristics of surrounding rock,the law of water inflow,and the change of lining water pressure,considering the local artificial boundary conditions for seepage in large rock mass,.In addition,the influences of rock permeability,fracture aperture,grouting circle thickness,and penetration are analyzed.The results show that:(1)Only fractures with aperture wider than 0.1 mm can play a significant role in water conduction in rocks with the permeability lower than 10^(-11)m^(2);(2)The greater the permeability difference between the fractures and rocks,the more remarkable the effects of fractures on the surrounding rock seepage field and cavern water inflow;(3)The sensitivity of grouting waterproof function to grouting circle thickness,grouting ring penetration,and rock permeability is significantly higher than that of tunnel buried depth and fracture aperture;(4)The lining water head is much more sensitive to the grouting circle thickness and penetration than to the tunnel buried depth;(5)With the grouting range enlarging,the impact of grouting circle permeability on the precipitation pressure role of the grouting ring increases;(6)For the interesting tunnel designed to be built at the depth of 70 m,the grouting circle with the thickness of 0.5 m and permeability of 10-^(14)m^(2)is recommended.展开更多
As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness dis...As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model.展开更多
先天免疫是抵御病毒感染的第一道防线。戊型肝炎病毒(Hepatitis E Virus,HEV)感染免疫健全人群导致急性自限性疾病,但免疫功能低下患者或孕妇感染HEV后会导致慢性化感染。HEV感染宿主细胞后,体内的模式识别受体(pattern recognition rec...先天免疫是抵御病毒感染的第一道防线。戊型肝炎病毒(Hepatitis E Virus,HEV)感染免疫健全人群导致急性自限性疾病,但免疫功能低下患者或孕妇感染HEV后会导致慢性化感染。HEV感染宿主细胞后,体内的模式识别受体(pattern recognition receptors,PRRs)将识别病毒基因组,进而诱导宿主多条抗病毒信号通路快速激活,使干扰素(Interferons,IFNs)和干扰素刺激基因(Interferon-stimulated genes,ISGs)表达,从而抑制病毒的复制。而HEV编码的蛋白参与了逃逸宿主的抗病毒先天免疫反应,抑制宿主细胞因子或趋化因子的产生,从而建立适宜病毒复制的环境。现将HEV感染对宿主信号通路的调控以及HEV逃逸宿主先天免疫的研究进行综述。展开更多
文摘Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a numerical percolation model of random fractured rock of a tunnel underpassing a water reservoir is established to study the seepage characteristics of surrounding rock,the law of water inflow,and the change of lining water pressure,considering the local artificial boundary conditions for seepage in large rock mass,.In addition,the influences of rock permeability,fracture aperture,grouting circle thickness,and penetration are analyzed.The results show that:(1)Only fractures with aperture wider than 0.1 mm can play a significant role in water conduction in rocks with the permeability lower than 10^(-11)m^(2);(2)The greater the permeability difference between the fractures and rocks,the more remarkable the effects of fractures on the surrounding rock seepage field and cavern water inflow;(3)The sensitivity of grouting waterproof function to grouting circle thickness,grouting ring penetration,and rock permeability is significantly higher than that of tunnel buried depth and fracture aperture;(4)The lining water head is much more sensitive to the grouting circle thickness and penetration than to the tunnel buried depth;(5)With the grouting range enlarging,the impact of grouting circle permeability on the precipitation pressure role of the grouting ring increases;(6)For the interesting tunnel designed to be built at the depth of 70 m,the grouting circle with the thickness of 0.5 m and permeability of 10-^(14)m^(2)is recommended.
基金College Students Innovation and Entrepreneurship Project of Guangzhou Railway Polytechnic(2025CXCY015)。
文摘As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model.