While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection ...While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps.展开更多
A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstl...A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstly, image registration is incorporated for reducing errors caused by the camera motion.Then, the background subtraction dual-model single Gaussian model(BS-DSGM) is proposed to build a precise background model. The BS-DSGM could prevent the background model from being contaminated by the shock waves. Finally, the twodimensional orthogonal discrete wavelet transformation is used to extract schlieren information and averaging schlieren data. Experimental results show our proposed algorithm is able to detect the aircraft in-flight and to extract the schlieren information. The precision of schlieren detection algorithm is 0.96. Three image quality evaluation indices are chosen for quantitative analysis of the shock waves visualization. The white Gaussian noise is added in the frames to validate the robustness of the proposed algorithm.Moreover, we adopt two times and four times down sampling to simulate different imaging distances for revealing how the imaging distance affects the schlieren information in the BOS system.展开更多
基金supported by the Program of Introducing Talents of Discipline to Universities(111 Plan)of China(B14010)the National Natural Science Foundation of China(31727901)
文摘While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps.
文摘A schlieren detection algorithm is proposed for the ground-to-air background oriented schlieren(BOS) system to achieve high-speed airplane shock waves visualization. The proposed method consists of three steps. Firstly, image registration is incorporated for reducing errors caused by the camera motion.Then, the background subtraction dual-model single Gaussian model(BS-DSGM) is proposed to build a precise background model. The BS-DSGM could prevent the background model from being contaminated by the shock waves. Finally, the twodimensional orthogonal discrete wavelet transformation is used to extract schlieren information and averaging schlieren data. Experimental results show our proposed algorithm is able to detect the aircraft in-flight and to extract the schlieren information. The precision of schlieren detection algorithm is 0.96. Three image quality evaluation indices are chosen for quantitative analysis of the shock waves visualization. The white Gaussian noise is added in the frames to validate the robustness of the proposed algorithm.Moreover, we adopt two times and four times down sampling to simulate different imaging distances for revealing how the imaging distance affects the schlieren information in the BOS system.