RGB-D传感器能够同时获取图像的彩色信息和深度信息,深度信息的引入有效提高了图像分类的精度。文章提出了一种基于稀疏联结卷积神经网络的RGB-D图像目标识别方法。该方法以卷积递归神经网络(convolutional and recursive neural networ...RGB-D传感器能够同时获取图像的彩色信息和深度信息,深度信息的引入有效提高了图像分类的精度。文章提出了一种基于稀疏联结卷积神经网络的RGB-D图像目标识别方法。该方法以卷积递归神经网络(convolutional and recursive neural networks,CNN-RNN)深度学习网络为基础,利用一种尺度归一化方法对图像进行处理,并且对CNN滤波器层进行改进;在CNN滤波器层,通过加速稳健特征(speeded up robust features,SURF)算子得到归一化图像中特征点的位置;然后以特征点为中心选取图像块,对所有训练图像的图像块进行训练,从而获取CNN滤波器组层的卷积核;以归一化图像的SURF点为中心确定滤波器层在图像的感受野,所得感受野与卷积核形成局部联结网络,构成了CNN的滤波器组层。实验结果表明,该方法有效地提高了图像的识别精度,具有较强的鲁棒性。展开更多
为解决PBRF-SLAM中由于粒子退化和粒子耗尽而导致的定位失真和建图一致性差的问题,提出了基于海鸥优化和最小方差重采样的优化方法。在PRBF-SLAM的采样过程中,采样一系列辅助粒子,并利用海鸥优化算法对这些粒子进行寻优,找到估计位姿的...为解决PBRF-SLAM中由于粒子退化和粒子耗尽而导致的定位失真和建图一致性差的问题,提出了基于海鸥优化和最小方差重采样的优化方法。在PRBF-SLAM的采样过程中,采样一系列辅助粒子,并利用海鸥优化算法对这些粒子进行寻优,找到估计位姿的最优解,从而避免因陷入局部极值导致的粒子退化。在PRBF-SLAM的重采样过程中,采用最小方差重采样方法替换原先的重采样方法,充分使用辅助粒子,尽可能保证重采样后粒子的多样性。利用Intel Research Lab和ACES Building公开数据集进行SLAM仿真,结果表明优化后的算法相比Gmapping算法总体的平移误差分别降低了36.36%和41.67%,总体的旋转误差分别降低了33.33%和40%。展开更多
文摘RGB-D传感器能够同时获取图像的彩色信息和深度信息,深度信息的引入有效提高了图像分类的精度。文章提出了一种基于稀疏联结卷积神经网络的RGB-D图像目标识别方法。该方法以卷积递归神经网络(convolutional and recursive neural networks,CNN-RNN)深度学习网络为基础,利用一种尺度归一化方法对图像进行处理,并且对CNN滤波器层进行改进;在CNN滤波器层,通过加速稳健特征(speeded up robust features,SURF)算子得到归一化图像中特征点的位置;然后以特征点为中心选取图像块,对所有训练图像的图像块进行训练,从而获取CNN滤波器组层的卷积核;以归一化图像的SURF点为中心确定滤波器层在图像的感受野,所得感受野与卷积核形成局部联结网络,构成了CNN的滤波器组层。实验结果表明,该方法有效地提高了图像的识别精度,具有较强的鲁棒性。
文摘为解决PBRF-SLAM中由于粒子退化和粒子耗尽而导致的定位失真和建图一致性差的问题,提出了基于海鸥优化和最小方差重采样的优化方法。在PRBF-SLAM的采样过程中,采样一系列辅助粒子,并利用海鸥优化算法对这些粒子进行寻优,找到估计位姿的最优解,从而避免因陷入局部极值导致的粒子退化。在PRBF-SLAM的重采样过程中,采用最小方差重采样方法替换原先的重采样方法,充分使用辅助粒子,尽可能保证重采样后粒子的多样性。利用Intel Research Lab和ACES Building公开数据集进行SLAM仿真,结果表明优化后的算法相比Gmapping算法总体的平移误差分别降低了36.36%和41.67%,总体的旋转误差分别降低了33.33%和40%。