Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experimen...Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.展开更多
Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as dev...Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.展开更多
A self-organized integrated air-ground detection swarmis tentatively applied to achieve reentry vehicle landing detection,such as searching and rescuing a manned spaceship. The detectionswarm consists of multiple unma...A self-organized integrated air-ground detection swarmis tentatively applied to achieve reentry vehicle landing detection,such as searching and rescuing a manned spaceship. The detectionswarm consists of multiple unmanned aerial vehicles (UAVs)and unmanned ground vehicles (UGVs). The UAVs can accessa detected object quickly for high mobility, while the UGVs cancomprehensively investigate the object due to the variety of carriedequipment. In addition, the integrated air-ground detectionswarm is capable of detecting from the ground and the air simultaneously.To accomplish the coordination of the UGVs andUAVs, they are all regarded as individuals of the artificial swarm.Those individuals make control decisions independently of othersbased on the self-organizing strategy. The overall requirements forthe detection swarm are analyzed, and the theoretical model ofthe self-organizing strategy based on a combined individual andenvironmental virtual function is established. The numerical investigationproves that the self-organizing strategy is suitable andscalable to control the detection swarm. To further inspect the engineeringreliability, an experiment set is established in laboratory,and the experimental demonstration shows that the self-organizingstrategy drives the detection swarm forming a close range and multiangularsurveillance configuration of a landing spot.展开更多
文摘Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.
文摘Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.
基金supported by the National Natural Science Foundation of China(11002076)the National High Technology Research and Development Program of China(863 Program)(2014AA7041002)
文摘A self-organized integrated air-ground detection swarmis tentatively applied to achieve reentry vehicle landing detection,such as searching and rescuing a manned spaceship. The detectionswarm consists of multiple unmanned aerial vehicles (UAVs)and unmanned ground vehicles (UGVs). The UAVs can accessa detected object quickly for high mobility, while the UGVs cancomprehensively investigate the object due to the variety of carriedequipment. In addition, the integrated air-ground detectionswarm is capable of detecting from the ground and the air simultaneously.To accomplish the coordination of the UGVs andUAVs, they are all regarded as individuals of the artificial swarm.Those individuals make control decisions independently of othersbased on the self-organizing strategy. The overall requirements forthe detection swarm are analyzed, and the theoretical model ofthe self-organizing strategy based on a combined individual andenvironmental virtual function is established. The numerical investigationproves that the self-organizing strategy is suitable andscalable to control the detection swarm. To further inspect the engineeringreliability, an experiment set is established in laboratory,and the experimental demonstration shows that the self-organizingstrategy drives the detection swarm forming a close range and multiangularsurveillance configuration of a landing spot.