The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively...The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages.展开更多
Shale gas reservoirs have been successfully developed due to the advancement of the horizontal well drilling and multistage hydraulic fracturing techniques.However,the optimization design of the horizontal well drilli...Shale gas reservoirs have been successfully developed due to the advancement of the horizontal well drilling and multistage hydraulic fracturing techniques.However,the optimization design of the horizontal well drilling,hydraulic fracturing,and operational schedule is a challenging problem.An ensemble-based optimization method(EnOpt)is proposed here to optimize the design of the hydraulically fractured horizontal well in the shale gas reservoir.The objective is to maximize the net present value(NPV)which requires a simulation model to predict the cumulative shale gas production.To accurately describe the geometry of the hydraulic fractures,the embedded discrete fracture modeling method(EDFM)is used to construct the shale gas simulation model.The efects of gas absorption,Knudsen difusion,natural and hydraulic fractures,and gas-water two phase fow are considered in the shale gas production system.To improve the parameter continuity and Gaussianity required by the EnOpt method,the Hough transformation parameterization is used to characterize the horizontal well.The results show that the proposed method can efectively optimize the design parameters of the hydraulically fractured horizontal well,and the NPV can be improved greatly after optimization so that the design parameters can approach to their optimal values.展开更多
Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity ...Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity numerical simulation data.This presents a significant challenge because the sole source of authentic wellbore production data for training is sparse.In response to this challenge,this work introduces a novel architecture called physics-informed neural network based on domain decomposition(PINN-DD),aiming to effectively utilize the sparse production data of wells for reservoir simulation with large-scale systems.To harness the capabilities of physics-informed neural networks(PINNs)in handling small-scale spatial-temporal domain while addressing the challenges of large-scale systems with sparse labeled data,the computational domain is divided into two distinct sub-domains:the well-containing and the well-free sub-domain.Moreover,the two sub-domains and the interface are rigorously constrained by the governing equations,data matching,and boundary conditions.The accuracy of the proposed method is evaluated on two problems,and its performance is compared against state-of-the-art PINNs through numerical analysis as a benchmark.The results demonstrate the superiority of PINN-DD in handling large-scale reservoir simulation with limited data and show its potential to outperform conventional PINNs in such scenarios.展开更多
基金supported by the National Natural Science Foundation of China (Nos.52274048 and 52374017)Beijing Natural Science Foundation (No.3222037)the CNPC 14th five-year perspective fundamental research project (No.2021DJ2104)。
文摘The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages.
基金This work is funded by the National Science and Technology Major Project of China(Grant Nos.2016ZX05037003-003 and 2017ZX05032004-002)PetroChina Innovation Foundation(Grant No.2020D-5007-0203)+2 种基金the National Natural Science Foundation of China(Grant No.51374222)the Sinopec fundamental perspective research project(Grant No.P18086-5)Joint Funds of the National Natural Science Foundation of China(U19B6003-02-05)supported by Science Foundation of China University of Petroleum,Beijing(Nos.2462018QZDX13 and 2462020YXZZ028).
文摘Shale gas reservoirs have been successfully developed due to the advancement of the horizontal well drilling and multistage hydraulic fracturing techniques.However,the optimization design of the horizontal well drilling,hydraulic fracturing,and operational schedule is a challenging problem.An ensemble-based optimization method(EnOpt)is proposed here to optimize the design of the hydraulically fractured horizontal well in the shale gas reservoir.The objective is to maximize the net present value(NPV)which requires a simulation model to predict the cumulative shale gas production.To accurately describe the geometry of the hydraulic fractures,the embedded discrete fracture modeling method(EDFM)is used to construct the shale gas simulation model.The efects of gas absorption,Knudsen difusion,natural and hydraulic fractures,and gas-water two phase fow are considered in the shale gas production system.To improve the parameter continuity and Gaussianity required by the EnOpt method,the Hough transformation parameterization is used to characterize the horizontal well.The results show that the proposed method can efectively optimize the design parameters of the hydraulically fractured horizontal well,and the NPV can be improved greatly after optimization so that the design parameters can approach to their optimal values.
基金funded by the National Natural Science Foundation of China(Grant No.52274048)Beijing Natural Science Foundation(Grant No.3222037)+1 种基金the CNPC 14th Five-Year Perspective Fundamental Research Project(Grant No.2021DJ2104)the Science Foundation of China University of Petroleum-Beijing(No.2462021YXZZ010).
文摘Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity numerical simulation data.This presents a significant challenge because the sole source of authentic wellbore production data for training is sparse.In response to this challenge,this work introduces a novel architecture called physics-informed neural network based on domain decomposition(PINN-DD),aiming to effectively utilize the sparse production data of wells for reservoir simulation with large-scale systems.To harness the capabilities of physics-informed neural networks(PINNs)in handling small-scale spatial-temporal domain while addressing the challenges of large-scale systems with sparse labeled data,the computational domain is divided into two distinct sub-domains:the well-containing and the well-free sub-domain.Moreover,the two sub-domains and the interface are rigorously constrained by the governing equations,data matching,and boundary conditions.The accuracy of the proposed method is evaluated on two problems,and its performance is compared against state-of-the-art PINNs through numerical analysis as a benchmark.The results demonstrate the superiority of PINN-DD in handling large-scale reservoir simulation with limited data and show its potential to outperform conventional PINNs in such scenarios.