期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Roles of furfural during the thermal treatment of bio-oil at low temperatures 被引量:2
1
作者 Zhe Xiong yuanjing chen +8 位作者 Muhammad Mufti Azis Xun Hu Wei Deng Hengda Han Long Jiang Sheng Su Song Hu Yi Wang Jun Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期85-95,共11页
The reactive O-containing species in bio-oil could induce the polymerization of bio-oil during its thermal treatment, which affects the relevant utilization of bio-oil significantly. Furans, as the highly reactive Oco... The reactive O-containing species in bio-oil could induce the polymerization of bio-oil during its thermal treatment, which affects the relevant utilization of bio-oil significantly. Furans, as the highly reactive Ocontaining species in bio-oil, play important roles during the thermal treatment of bio-oil. In this study,furfural was chosen as the representative of the furans in bio-oil to investigate its roles during the thermal treatment of bio-oil. The raw bio-oil with and without the addition of extra furfural(10 wt% of bio-oil) and pure furfural were pyrolyzed in a fixed-bed reactor at 200–500 ℃. The results show that the interactions among furfural and bio-oil components can take place prior to the evaporation of furfural(<140 ℃) to form the intermediates, then these intermediates could be further polymerized to form large molecular compounds, and coke can be formed via the interactions at temperatures ≥ 300 ℃. At temperatures ≤ 300 ℃, furfural mainly interacts with anhydrosugars. As the temperature further increases, the aromatics are involved in the interactions to form coke. The increased percentage of the coke formed via the interactions is in a linear relation with the conversion of furfural during the pyrolysis at 300–500 ℃(no coke formed at 200 ℃). Meanwhile, more non-aromatic light components(≤ C6) and less aromatics in the tars could be formed due to the interactions. 展开更多
关键词 BIO-OIL FURFURAL AROMATIC COKE POLYMERIZATION Interaction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部