To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire m...To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire materials(EPMWM)for vibration isolation was previously investigated.In this paper,a study focusing on the impact-resistance of EPMWM with the consideration of ambient temperature is presented.The quasi-static and low-velocity impact mechanical behavior of EPMWM under different temperatures(25℃-300℃)are systematically studied.The results of the static compression test show that the damping energy dissipation of EPMWM increases with temperature while the nonlinear damping characteristics are gradually enhanced.During the impact experiments,the impact energy loss rate of EPMWM was between 65%and 85%,while the temperatures increased from 25℃to 300℃.Moreover,under the same drop impact conditions,the overall deformation of EPMWM decreases in the temperature range of 100℃-200℃.On the other hand,the impact stiffness,energy dissipation,and impact loss factor of EPMWM significantly increase with temperature.This can be attributed to an increase in temperature,which changes the thermal expansion coefficient and contact state of the internal wire helixes.Consequently,the energy dissipation mode(dry friction,air damping,and plastic deformation)of EPMWM is also altered.Therefore,the EPMWM may act as a potential candidate material for superior energy absorption applications.展开更多
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en...Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).展开更多
The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of R...The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to improve its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in indoor environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs.展开更多
Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into ...Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into W through mechanical alloying. XRD analysis shows that after 50 h of ball milling, the diffraction peak of Al completely disappears and W(Al60) super-saturated solid solution powder is obtained. Further observation by HAADF and HRTEM reveals that the W(Al60) super-saturated solid solution powder is a mixture of solid solution and amorphous phase. Based on the good thermal stability of W(Al60) alloy powder below 1000℃, W(Al60)-Al composite was synthesized by hot pressing process.Impact initiation experiments suggest that the W(Al60)-Al composite has excellent reaction characteristics, and multiple types of tungsten oxides are detected in the reaction products, showing that the modified W is combustible in air. Due to the combustion of tungsten, the energy release rate of the W(Al60)-Al composite at speed of 1362 m/s reaches 2.71 kJ/g.展开更多
Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-elem...Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-element Ti-Zr-Ta alloys with good casting performance were studied.The microstructure of the Ti_(x)ZrTa alloys gradually change from BCC+HCP to single BCC structure with the increase of Ti.While the Ti_(2)Zr_(y)Ta alloys was still uniform and single BCC structure with the increase of Zr.The evolution of microstructure and composition then greatly affect the mechanical properties and energy-release characteristics of Ti-Zr-Ta alloys.The synergistic effect of dual phase structure increases the fracture strain of Ti_(x)ZrTa(x=0.2,0.5)with the Ti content decreases,while the fracture strain of Ti_(x)ZrTa(x=2.0,3.0,4.0)gradually increase with the Ti content increases caused by the annihilation of the obstacles for dislocation movement.And as Zr content increases,the fracture strain of Ti_(2)Zr_(y)Ta alloys decrease,then the oxidation reaction rate and fragmentation degree gradually increase.The higher oxidation rate and the lager exposed oxidation area jointly leads the higher releasing energy efficiency of Ti_(x)ZrTa alloys with low Ti content and Ti_(2)Zr_(y)Ta alloys with high Zr content.展开更多
基金supported by the National Natural Science Foundation of China(grant number 51805086)the Natural Science Foundation of Fujian Province,China(grant number 2018J01763)。
文摘To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire materials(EPMWM)for vibration isolation was previously investigated.In this paper,a study focusing on the impact-resistance of EPMWM with the consideration of ambient temperature is presented.The quasi-static and low-velocity impact mechanical behavior of EPMWM under different temperatures(25℃-300℃)are systematically studied.The results of the static compression test show that the damping energy dissipation of EPMWM increases with temperature while the nonlinear damping characteristics are gradually enhanced.During the impact experiments,the impact energy loss rate of EPMWM was between 65%and 85%,while the temperatures increased from 25℃to 300℃.Moreover,under the same drop impact conditions,the overall deformation of EPMWM decreases in the temperature range of 100℃-200℃.On the other hand,the impact stiffness,energy dissipation,and impact loss factor of EPMWM significantly increase with temperature.This can be attributed to an increase in temperature,which changes the thermal expansion coefficient and contact state of the internal wire helixes.Consequently,the energy dissipation mode(dry friction,air damping,and plastic deformation)of EPMWM is also altered.Therefore,the EPMWM may act as a potential candidate material for superior energy absorption applications.
基金supported by the National Natural Science Foundation of China (Grant No.51805086)。
文摘Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).
基金supported by the National Natural Science Foundation of China(6120200461472192)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to improve its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in indoor environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs.
基金supported by the National Natural Science Foundation of China, [Award number: 11972372] and [Award number: U20A20231]。
文摘Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into W through mechanical alloying. XRD analysis shows that after 50 h of ball milling, the diffraction peak of Al completely disappears and W(Al60) super-saturated solid solution powder is obtained. Further observation by HAADF and HRTEM reveals that the W(Al60) super-saturated solid solution powder is a mixture of solid solution and amorphous phase. Based on the good thermal stability of W(Al60) alloy powder below 1000℃, W(Al60)-Al composite was synthesized by hot pressing process.Impact initiation experiments suggest that the W(Al60)-Al composite has excellent reaction characteristics, and multiple types of tungsten oxides are detected in the reaction products, showing that the modified W is combustible in air. Due to the combustion of tungsten, the energy release rate of the W(Al60)-Al composite at speed of 1362 m/s reaches 2.71 kJ/g.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171166,11972372 and U20A20231)supported by Sinoma Institute of Materials Research(Guang Zhou)Co.,Ltd。
文摘Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-element Ti-Zr-Ta alloys with good casting performance were studied.The microstructure of the Ti_(x)ZrTa alloys gradually change from BCC+HCP to single BCC structure with the increase of Ti.While the Ti_(2)Zr_(y)Ta alloys was still uniform and single BCC structure with the increase of Zr.The evolution of microstructure and composition then greatly affect the mechanical properties and energy-release characteristics of Ti-Zr-Ta alloys.The synergistic effect of dual phase structure increases the fracture strain of Ti_(x)ZrTa(x=0.2,0.5)with the Ti content decreases,while the fracture strain of Ti_(x)ZrTa(x=2.0,3.0,4.0)gradually increase with the Ti content increases caused by the annihilation of the obstacles for dislocation movement.And as Zr content increases,the fracture strain of Ti_(2)Zr_(y)Ta alloys decrease,then the oxidation reaction rate and fragmentation degree gradually increase.The higher oxidation rate and the lager exposed oxidation area jointly leads the higher releasing energy efficiency of Ti_(x)ZrTa alloys with low Ti content and Ti_(2)Zr_(y)Ta alloys with high Zr content.