Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent therma...Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent thermal stability and high-voltage short-pulse initiation performance. However, the solid phase ripening of ultrafine HNS leads to a degradation in its impact detonation performance. Previous studies have indicated that residual dimethyl formamide(DMF), which is present in ultrafine HNS prepared using the recrystallization method, affects ultrafine HNS ripening. The mechanism of residual solvent effects on solid phase ripening of ultrafine HNS is unclear. In this work, the specific surface area(SSA) derived from small angle X-ray scattering(SAXS) was utilized for kinetic fitting analysis to explore the mechanism by which residual solvents enhance the solid phase ripening of ultrafine HNS. The results of the SSA measured by insitu SAXS under conditions of 150℃ for 40 h revealed that the sample with 0.2% residual DMF exhibited a 21.51% decrease in SSA, whereas the sample with only 0.04% residual DMF showed a decrease of 15.66%.Furthermore, the higher amounts of residual DMF accelerated the reduction in SSA with time. Kinetic fitting analysis demonstrated that reducing residual DMF would lower both the activation energy and the pre-exponential factor, consequently decreasing the rate constant of solid phase ripening. The mechanism was speculated that it primarily facilitated the Ostwald ripening(OR). Additionally, contrast variation small angle X-ray scattering(CV-SAXS) confirmed that coating of ultrafine HNS particles is an effective method for inhibiting ripening, significantly reducing both the rate and extent of ripening of ultrafine HNS. This study predicts how residual solvents impact the solid phase ripening process of ultrafine HNS and proposes strategies for enhancing the long-term stability of ultrafine explosives.展开更多
Herein,a first example of energetic-energetic cocrystal polymorphs with a 1:1 M ratio was discovered by cocrystallizing CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane)with 1,3-DNP(1,3-dinitropyrazole...Herein,a first example of energetic-energetic cocrystal polymorphs with a 1:1 M ratio was discovered by cocrystallizing CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane)with 1,3-DNP(1,3-dinitropyrazole).These two energetic cocrystal polymorphs(cocrystal 1 and cocrystal 2)exhibit distinct crystal packing styles,which lead to significant variations in their physicochemical properties.Notably,cocrystal 2 has a high density of 1.963 g·cm^(-3)at 170 K,exhibiting high detonation performances(9187 m·s^(-1);38.68 GPa)comparable to HMX(1,3,5,7-tetranitro-1,3,5,7-tetrazocane)meanwhile displaying an improved safety(10 J)relative to RDX(1,3,5-trinitro-1,3,5-triazinane),making it a potential high-energy,low-sensitivity energetic material.This work opens up a new strategy to deeply tune properties of energetic materials by constructing energetic-energetic cocrystal polymorphs.These energetic cocrystal polymorphs represent a new field of energetic materials that has not yet been studied.展开更多
The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs ...The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments.展开更多
An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W e...An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W electrode.The wear mechanism of Ni-TiN/Cu composite electrode in the case of high-frequency pulse current is studied,and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out.Compared with the electrode made from homogeneous material,the high frequency electromagnetic properties of Ni-TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.展开更多
基金the Presidential Foundation of CAEP(Grant No.YZJJZQ2023005)the National Natural Science Foundation of China(Grant No.22375191).
文摘Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent thermal stability and high-voltage short-pulse initiation performance. However, the solid phase ripening of ultrafine HNS leads to a degradation in its impact detonation performance. Previous studies have indicated that residual dimethyl formamide(DMF), which is present in ultrafine HNS prepared using the recrystallization method, affects ultrafine HNS ripening. The mechanism of residual solvent effects on solid phase ripening of ultrafine HNS is unclear. In this work, the specific surface area(SSA) derived from small angle X-ray scattering(SAXS) was utilized for kinetic fitting analysis to explore the mechanism by which residual solvents enhance the solid phase ripening of ultrafine HNS. The results of the SSA measured by insitu SAXS under conditions of 150℃ for 40 h revealed that the sample with 0.2% residual DMF exhibited a 21.51% decrease in SSA, whereas the sample with only 0.04% residual DMF showed a decrease of 15.66%.Furthermore, the higher amounts of residual DMF accelerated the reduction in SSA with time. Kinetic fitting analysis demonstrated that reducing residual DMF would lower both the activation energy and the pre-exponential factor, consequently decreasing the rate constant of solid phase ripening. The mechanism was speculated that it primarily facilitated the Ostwald ripening(OR). Additionally, contrast variation small angle X-ray scattering(CV-SAXS) confirmed that coating of ultrafine HNS particles is an effective method for inhibiting ripening, significantly reducing both the rate and extent of ripening of ultrafine HNS. This study predicts how residual solvents impact the solid phase ripening process of ultrafine HNS and proposes strategies for enhancing the long-term stability of ultrafine explosives.
基金support for this study by the National Natural Science Foundation of China(Grant No.22275175)。
文摘Herein,a first example of energetic-energetic cocrystal polymorphs with a 1:1 M ratio was discovered by cocrystallizing CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane)with 1,3-DNP(1,3-dinitropyrazole).These two energetic cocrystal polymorphs(cocrystal 1 and cocrystal 2)exhibit distinct crystal packing styles,which lead to significant variations in their physicochemical properties.Notably,cocrystal 2 has a high density of 1.963 g·cm^(-3)at 170 K,exhibiting high detonation performances(9187 m·s^(-1);38.68 GPa)comparable to HMX(1,3,5,7-tetranitro-1,3,5,7-tetrazocane)meanwhile displaying an improved safety(10 J)relative to RDX(1,3,5-trinitro-1,3,5-triazinane),making it a potential high-energy,low-sensitivity energetic material.This work opens up a new strategy to deeply tune properties of energetic materials by constructing energetic-energetic cocrystal polymorphs.These energetic cocrystal polymorphs represent a new field of energetic materials that has not yet been studied.
基金the USTC Research Funds of the Double First-Class Initiative(YD3420002002)the Youth Innovation Promotion Association CAS(2020451)Fundamental Research Funds for the Central Universities(WK3420000011).
基金supported by the National Natural Science Foundation of China (60803074)the Fundamental Research Funds for the Central Universities (DUT10JR06)
文摘The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments.
基金the National Natural Science Foundation of China for financially supporting this research through project No.51005027
文摘An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W electrode.The wear mechanism of Ni-TiN/Cu composite electrode in the case of high-frequency pulse current is studied,and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out.Compared with the electrode made from homogeneous material,the high frequency electromagnetic properties of Ni-TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.