Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics.Herein,we integrate semiconducting devices on cellulose paper substrate through a simple abrasion te...Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics.Herein,we integrate semiconducting devices on cellulose paper substrate through a simple abrasion technique that yields high-performance photodetectors.A solvent-free WS_(2) film deposited on paper favors an effective electron-hole separation and hampers recombination.The as-prepared paper-based WS2 photodetectors exhibit a sensitive photoresponse over a wide spectral range spanning from ultraviolet(365 nm)to near-infrared(940 nm).Their responsivity value reaches up to~270 mA W^(−1) at 35 V under a power density of 35 mW cm^(−2).A high performance photodetector was achieved by controlling the environmental exposure as the ambient oxygen molecules were found to decrease the photoresponse and stability of the WS_(2) photodetector.Furthermore,we have built a spectrometer using such a paperbased WS_(2) device as the photodetecting component to illustrate its potential application.The present work could promote the development of cost-effective disposable photodetection devices.展开更多
We reported a bifunctional material, Cr-salen implanted conjugated microporous polymer(Cr-CMP), which is able to capture excellent CO2amounts and has a remarkable catalytic activity towards the cycloaddition reaction ...We reported a bifunctional material, Cr-salen implanted conjugated microporous polymer(Cr-CMP), which is able to capture excellent CO2amounts and has a remarkable catalytic activity towards the cycloaddition reaction of CO2to epoxides forming cyclic carbonates at mild conditions without additional solvents. This heterogeneous Cr-CMP catalyst has a superior catalytic activity to its related homogeneous catalyst and can be reused more than ten times without a significant decrease in catalytic activity.展开更多
Osteoarthritis(OA)is the most common type of degenerative joint disease which affects 7%of the global population and more than 500 million people worldwide.One research frontier is the development of hydrogels for OA ...Osteoarthritis(OA)is the most common type of degenerative joint disease which affects 7%of the global population and more than 500 million people worldwide.One research frontier is the development of hydrogels for OA treatment,which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives.Both approaches address the big challenge:establishing stable integration of such delivery systems or implants.Adhesive hydrogels provide possible solutions to this challenge.However,few studies have described the current advances in using adhesive hydrogel for OA treatment.This review summarizes the commonly used hydrogels with their adhesion mechanisms and components.Additionally,recognizing that OA is a complex disease involving different biological mechanisms,the bioactive therapeutic strategies are also presented.By presenting the adhesive hydrogels in an interdisciplinary way,including both the fields of chemistry and biology,this review will attempt to provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.展开更多
Magnesium metal batteries are considered as viable alternatives of lithium-ion batteries for their low cost and high capacity of magnesium.Nevertheless,the practical application of magnesium metal batteries is extreme...Magnesium metal batteries are considered as viable alternatives of lithium-ion batteries for their low cost and high capacity of magnesium.Nevertheless,the practical application of magnesium metal batteries is extremely challenging due to a lack of suitable electrolyte that can stabilize magnesium metal anode and high-voltage cathode simultaneously.Herein,we found that in-situ formed lithium/magnesium hybrid electrolyte interphases in conventional LiPF6-containing carbonate-based electrolyte can not only prevent the production of passivation layer on the magnesium metal anode,but also inhibit the oxidation of the electrolyte under high voltage.The symmetric magnesium‖magnesium battery can achieve reversible stripping/plating for 1600 and 600 h at 0.02 and 0.1 mA cm^(-2),respectively.In addition,when coupled with a carbon fiber cathode,the magnesium metal battery exhibited a capacity retention rate of 96.3% for 1000 cycles at a current density of 500 mA g^(-1)and presented a working voltage of ~3.1 V.This research paves a new and promising path to the commercialization process of rechargeable magnesium metal batteries.展开更多
基金Felix Carrascoso (ICMM-CSIC) for support with the metal evaporationfunding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement n°755655,ERC-StG 2017 project2D-TOPSENSE)+5 种基金the Ministry of Science and Innovation (Spain) through the project PID2020-115566RB-I00support from the National Natural Science Foundation of China under grant No.61704129 and No.62011530438the Key Research and Development Program of Shaanxi (Program No.2021KW-02)Fundamental Research Funds for the Central Universities (JB211409)the grant from China Scholarship Council (CSC) under No.201908610178the support from European Union’s Horizon 2020 research and innovation program under the grant agreement 956813 (2Exciting)。
文摘Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics.Herein,we integrate semiconducting devices on cellulose paper substrate through a simple abrasion technique that yields high-performance photodetectors.A solvent-free WS_(2) film deposited on paper favors an effective electron-hole separation and hampers recombination.The as-prepared paper-based WS2 photodetectors exhibit a sensitive photoresponse over a wide spectral range spanning from ultraviolet(365 nm)to near-infrared(940 nm).Their responsivity value reaches up to~270 mA W^(−1) at 35 V under a power density of 35 mW cm^(−2).A high performance photodetector was achieved by controlling the environmental exposure as the ambient oxygen molecules were found to decrease the photoresponse and stability of the WS_(2) photodetector.Furthermore,we have built a spectrometer using such a paperbased WS_(2) device as the photodetecting component to illustrate its potential application.The present work could promote the development of cost-effective disposable photodetection devices.
基金supported by the National Science Foundation of China(21373202 and 21173209)"Talent 100"Program of Chinese Academy of Sciencesand"Chutian"Project of China Three Gorges University
文摘We reported a bifunctional material, Cr-salen implanted conjugated microporous polymer(Cr-CMP), which is able to capture excellent CO2amounts and has a remarkable catalytic activity towards the cycloaddition reaction of CO2to epoxides forming cyclic carbonates at mild conditions without additional solvents. This heterogeneous Cr-CMP catalyst has a superior catalytic activity to its related homogeneous catalyst and can be reused more than ten times without a significant decrease in catalytic activity.
基金supported by the National Natural Science Foundation of China (52103184, 82102593)the China Postdoctoral Science Foundation (XJ2021051, 2020TQ0129, 2021M693960)+3 种基金the"Young Talent Support Plan"and Funding for Basic Scientific Research of Xi’an Jiaotong Universitysupported by a Grant from Science Foundation Ireland (SFI)co-funded under the European Regional Development Fund (13/RC/2073_P2)the funds received from European Union Horizon 2020 Programme (H2020-MSCA-IF-2017) under the Marie Sklodowska-Curie Individual Fellowship (797716).
文摘Osteoarthritis(OA)is the most common type of degenerative joint disease which affects 7%of the global population and more than 500 million people worldwide.One research frontier is the development of hydrogels for OA treatment,which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives.Both approaches address the big challenge:establishing stable integration of such delivery systems or implants.Adhesive hydrogels provide possible solutions to this challenge.However,few studies have described the current advances in using adhesive hydrogel for OA treatment.This review summarizes the commonly used hydrogels with their adhesion mechanisms and components.Additionally,recognizing that OA is a complex disease involving different biological mechanisms,the bioactive therapeutic strategies are also presented.By presenting the adhesive hydrogels in an interdisciplinary way,including both the fields of chemistry and biology,this review will attempt to provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.
基金supported by the National Natural Science Foundation of China,China(51972351,51802361)the Guangdong Basic and Applied Basic Research Foundation,China(2019B151502045)the Fundamental Research Funds for the Central Universities of China,China(22lgqb01)。
文摘Magnesium metal batteries are considered as viable alternatives of lithium-ion batteries for their low cost and high capacity of magnesium.Nevertheless,the practical application of magnesium metal batteries is extremely challenging due to a lack of suitable electrolyte that can stabilize magnesium metal anode and high-voltage cathode simultaneously.Herein,we found that in-situ formed lithium/magnesium hybrid electrolyte interphases in conventional LiPF6-containing carbonate-based electrolyte can not only prevent the production of passivation layer on the magnesium metal anode,but also inhibit the oxidation of the electrolyte under high voltage.The symmetric magnesium‖magnesium battery can achieve reversible stripping/plating for 1600 and 600 h at 0.02 and 0.1 mA cm^(-2),respectively.In addition,when coupled with a carbon fiber cathode,the magnesium metal battery exhibited a capacity retention rate of 96.3% for 1000 cycles at a current density of 500 mA g^(-1)and presented a working voltage of ~3.1 V.This research paves a new and promising path to the commercialization process of rechargeable magnesium metal batteries.