Since colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite,heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel ce...Since colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite,heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel cells(SOFCs).However,so far,the practical uses of such promising material have failed to materialize in SOFCs due to the short circuit risk caused by SrTiO3.In this study,a series of fluorite/perovskite heterostructures made of Sm-doped CeO2 and SrTiO3(SDC–STO)are developed in a new bulk-heterostructure form and evaluated as electrolytes.The prepared cells exhibit a peak power density of 892 mW cm−2 along with open circuit voltage of 1.1 V at 550°C for the optimal composition of 4SDC–6STO.Further electrical studies reveal a high ionic conductivity of 0.05–0.14 S cm^−1 at 450–550°C,which shows remarkable enhancement compared to that of simplex SDC.Via AC impedance analysis,it has been shown that the small grain-boundary and electrode polarization resistances play the major roles in resulting in the superior performance.Furthermore,a Schottky junction effect is proposed by considering the work functions and electronic affinities to interpret the avoidance of short circuit in the SDC–STO cell.Our findings thus indicate a new insight to design electrolytes for low-temperature SOFCs.展开更多
Three-dimensional(3 D)topological insulators(TIs)are candidate materials for various electronic and spintronic devices due to their strong spin-orbit coupling and unique surface electronic structure.Rapid,low-cost pre...Three-dimensional(3 D)topological insulators(TIs)are candidate materials for various electronic and spintronic devices due to their strong spin-orbit coupling and unique surface electronic structure.Rapid,low-cost preparation of large-area TI thin films compatible with conventional semiconductor technology is the key to the practical applications of TIs.Here we show that wafer-sized Bi2Te3 family TI and magnetic TI films with decent quality and well-controlled composition and properties can be prepared on amorphous SiO2/Si substrates by magnetron cosputtering.The SiO2/Si substrates enable us to electrically tune(Bi1-xSbx)2Te3 and Cr-doped(Bi1-xSbx)2 Te3 TI films between p-type and n-type behavior and thus study the phenomena associated with topological surface states,such as the quantum anomalous Hall effect(QAHE).This work significantly facilitates the fabrication of TI-based devices for electronic and spintronic applications.展开更多
A prevailing understanding on electrochemical activation of photoelectrodes is that electrochemical treatment leads to increased charge carrier densities thereby improved photoelectrode performances.Contrary to this u...A prevailing understanding on electrochemical activation of photoelectrodes is that electrochemical treatment leads to increased charge carrier densities thereby improved photoelectrode performances.Contrary to this understanding,in this study enhanced photoactivity of WO_(3) photoanode upon electrochemical treatment is ascribed to an extraordinary mechanism of surface trap passivation.The associated mechanism is analyzed by in situ optical spectroscopy,using which the optical property changes of WO_(3) electrode during electrochemical treatment are monitored.The results suggest surface W^(5+)species,the origin of surface traps on WO_(3) photoanodes,are converted to W^(6+) ions by electrochemical treatment.This study demonstrates the particular ability of the electrochemical strategy to passivate surface traps of photoanodes,and also shows the advantages of in situ optical spectroscopy to investigate the real-time electronic structure variations of electrodes during electrochemical treatment.展开更多
Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the...Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the study,the dopant strategy is utilized to construct nitrogen/sulfur-doped non-graphitized carbon(N-NGC or S-NGC)shell decorated on three-dimensional graphene foam(GF)as a self-support electrode.The highly disordered microstructures of heteroatom doped carbons are produced by applying a low-temperature pyrolysis treatment to precursors containing nitrogen and sulfur.The DFT calculations of Na-ion adsorption energies at diverse heteroatom sites show marginal-S,pyrrolic N and pyridinic N with more intensive Na-ion adsorption ability than middle-S,C=O and pristine carbon.The N-NGC with dominant small graphitic regions delivers adsorption ability to Na-ion,while the S-NGC with significant single carbon lattice stripes demonstrates redox reaction with Na-ion.Evidently,in comparison with only adsorption-driven slope regions at high potential for N-NGC,the redox reaction-generated potentialplateau enables non-graphitized S-NGC superior discharge/charge capacity and cycle-stability in the slope region.This work could provide deep insight into the rational design of non-graphitized carbon with rich microstructure and composition.展开更多
基金The authors acknowledge funding from the Shanghai Pujiang Program,the National Natural Science Foundation of China(12004103)Hubei Provincial Natural Science Foundation of China(No.2020CFB414)+1 种基金Fundamental Research Funds for the Central Universities(19D111317,20D110638/003 and 274-10-0001/003)start-up grant from Donghua University(No.113-07-0053058).
文摘Since colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite,heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel cells(SOFCs).However,so far,the practical uses of such promising material have failed to materialize in SOFCs due to the short circuit risk caused by SrTiO3.In this study,a series of fluorite/perovskite heterostructures made of Sm-doped CeO2 and SrTiO3(SDC–STO)are developed in a new bulk-heterostructure form and evaluated as electrolytes.The prepared cells exhibit a peak power density of 892 mW cm−2 along with open circuit voltage of 1.1 V at 550°C for the optimal composition of 4SDC–6STO.Further electrical studies reveal a high ionic conductivity of 0.05–0.14 S cm^−1 at 450–550°C,which shows remarkable enhancement compared to that of simplex SDC.Via AC impedance analysis,it has been shown that the small grain-boundary and electrode polarization resistances play the major roles in resulting in the superior performance.Furthermore,a Schottky junction effect is proposed by considering the work functions and electronic affinities to interpret the avoidance of short circuit in the SDC–STO cell.Our findings thus indicate a new insight to design electrolytes for low-temperature SOFCs.
基金National Key R&D Plan Program of China(Grant No.2017YFF0206104)National Key Scien-tific Research Projects of China(Grant No.2015CB921502)+3 种基金National Natural Science Foundation of China(Grant Nos.61574169 and 51871018)Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics of Chinese Academy of SciencesBeijing Natural Science Foundation(Grant No.Z180014)Beijing Outstanding Young Scientists Projects(Grant No.BJJWZYJH01201910005018)。
文摘Three-dimensional(3 D)topological insulators(TIs)are candidate materials for various electronic and spintronic devices due to their strong spin-orbit coupling and unique surface electronic structure.Rapid,low-cost preparation of large-area TI thin films compatible with conventional semiconductor technology is the key to the practical applications of TIs.Here we show that wafer-sized Bi2Te3 family TI and magnetic TI films with decent quality and well-controlled composition and properties can be prepared on amorphous SiO2/Si substrates by magnetron cosputtering.The SiO2/Si substrates enable us to electrically tune(Bi1-xSbx)2Te3 and Cr-doped(Bi1-xSbx)2 Te3 TI films between p-type and n-type behavior and thus study the phenomena associated with topological surface states,such as the quantum anomalous Hall effect(QAHE).This work significantly facilitates the fabrication of TI-based devices for electronic and spintronic applications.
基金supported by the National Natural Science Foundation of China(51902153,51972165)the Ministry of Education of Singapore Tier 1(RG193/17,RG79/20(2020-T1-001-045))。
文摘A prevailing understanding on electrochemical activation of photoelectrodes is that electrochemical treatment leads to increased charge carrier densities thereby improved photoelectrode performances.Contrary to this understanding,in this study enhanced photoactivity of WO_(3) photoanode upon electrochemical treatment is ascribed to an extraordinary mechanism of surface trap passivation.The associated mechanism is analyzed by in situ optical spectroscopy,using which the optical property changes of WO_(3) electrode during electrochemical treatment are monitored.The results suggest surface W^(5+)species,the origin of surface traps on WO_(3) photoanodes,are converted to W^(6+) ions by electrochemical treatment.This study demonstrates the particular ability of the electrochemical strategy to passivate surface traps of photoanodes,and also shows the advantages of in situ optical spectroscopy to investigate the real-time electronic structure variations of electrodes during electrochemical treatment.
基金supported by the National Natural Science Foundation of China(52272296,51502092)the Fundamental Research Funds for the Central Universities(JKD01211601,1222201718002)+1 种基金the National Overseas High-Level Talent Youth Program in Chinathe Eastern Scholar Project of Shanghai。
文摘Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the study,the dopant strategy is utilized to construct nitrogen/sulfur-doped non-graphitized carbon(N-NGC or S-NGC)shell decorated on three-dimensional graphene foam(GF)as a self-support electrode.The highly disordered microstructures of heteroatom doped carbons are produced by applying a low-temperature pyrolysis treatment to precursors containing nitrogen and sulfur.The DFT calculations of Na-ion adsorption energies at diverse heteroatom sites show marginal-S,pyrrolic N and pyridinic N with more intensive Na-ion adsorption ability than middle-S,C=O and pristine carbon.The N-NGC with dominant small graphitic regions delivers adsorption ability to Na-ion,while the S-NGC with significant single carbon lattice stripes demonstrates redox reaction with Na-ion.Evidently,in comparison with only adsorption-driven slope regions at high potential for N-NGC,the redox reaction-generated potentialplateau enables non-graphitized S-NGC superior discharge/charge capacity and cycle-stability in the slope region.This work could provide deep insight into the rational design of non-graphitized carbon with rich microstructure and composition.