期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Nanoparticle-Decorated Ultrathin La2O3 Nanosheets as an Effcient Electrocatalysis for Oxygen Evolution Reactions 被引量:5
1
作者 Guangyuan Yan yizhan wang +7 位作者 Ziyi Zhang Yutao Dong Jingyu wang Corey Carlos Pu Zhang Zhiqiang Cao Yanchao Mao Xudong wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第4期41-52,共12页
Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial a... Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial applications. Here, we report a rare-earth metal-based oxide electrocatalyst comprised of ultrathin amorphous La2O3 nanosheets hybridized with uniform La2O3 nanoparticles(La2O3@NP-NS). Significantly improved OER performance is observed from the nanosheets with a nanometer-scale thickness. The as-synthesized 2.27-nm La2O3@NP-NS exhibits excellent catalytic kinetics with an overpotential of 310 mV at 10 m A cm^-2, a small Tafel slope of 43.1 mV dec^-1, and electrochemical impedance of 38 Ω. More importantly, due to the ultrasmall thickness, its mass activity, and turnover frequency reach as high as 6666.7 A g^-1 and 5.79 s^-1, respectively, at an overpotential of 310 mV. Such a high mass activity is more than three orders of magnitude higher than benchmark OER electrocatalysts, such as IrO2 and RuO2. This work presents a sustainable approach toward the development of highly e cient electrocatalysts with largely reduced mass loading of precious elements. 展开更多
关键词 Oxygen evolution reaction Multiphase hybrid Two-dimensional nanomaterials Rare-earth oxides Ionic layer epitaxy
在线阅读 下载PDF
Rational design of Fe/Co-based diatomic catalysts for Li–S batteries by first-principles calculations
2
作者 张晓雅 程莹洁 +5 位作者 赵春宇 高敬莞 阚东晓 王义展 齐舵 魏英进 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期402-407,共6页
Fe/Co-based diatomic catalysts decorated on an N-doped graphene substrate are investigated by first-principles calculations to improve the electrochemical properties of Li–S batteries.Our results demonstrate that Fe ... Fe/Co-based diatomic catalysts decorated on an N-doped graphene substrate are investigated by first-principles calculations to improve the electrochemical properties of Li–S batteries.Our results demonstrate that Fe CoN8@Gra not only possesses moderate adsorption energies towards Li2Snspecies,but also exhibits superior catalytic activity for both reduction and oxidation reactions of the sulfur cathode.Moreover,the metallic property of the diatomic catalysts can be well maintained after Li2Snadsorption,which could help the sulfur cathode to maintain high conductivity during the whole charge–discharge process.Given these exceptional properties,it is expected that Fe CoN8@Gra could be a promising diatomic catalyst for Li–S batteries and afford insights for further development of advanced Li–S batteries. 展开更多
关键词 Li–S battery diatomic catalyst POLYSULFIDES first-principles calculations
在线阅读 下载PDF
High-Sensitivity Tunnel Magnetoresistance Sensors Based on Double Indirect and Direct Exchange Coupling Effect
3
作者 Xiufeng Han Yu Zhang +9 位作者 yizhan wang Li Huang Qinli Ma Houfang Liu Caihua Wan Jiafeng Feng Lin Yin Guoqiang Yu Tian Yu Yu Yan 《Chinese Physics Letters》 SCIE EI CAS CSCD 2021年第12期80-84,共5页
Detection of ultralow magnetic field requires magnetic sensors with high sensitivity and low noise level,especially for low operating frequency applications.We investigated the transport properties of tunnel magnetore... Detection of ultralow magnetic field requires magnetic sensors with high sensitivity and low noise level,especially for low operating frequency applications.We investigated the transport properties of tunnel magnetoresistance(TMR)sensors based on the double indirect exchange coupling effect.The TMR ratio of about 150%was obtained in the magnetic tunnel junctions and linear response to an in-plane magnetic field was successfully achieved.A high sensitivity of 1.85%/Oe was achieved due to a designed soft pinned sensing layer of CoFeB/NiFe/Ru/IrMn.Furthermore,the voltage output sensitivity and the noise level of 10.7 mV/V/Oe,10 nT/Hz^(1/2)at 1 Hz and3.3 nT/Hz^(1/2)at 10 Hz were achieved in Full Wheatstone Bridge configuration.This kind of magnetic sensors can be used in the field of smart grid for current detection and sensing. 展开更多
关键词 CONFIGURATION effect COUPLING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部