期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids 被引量:18
1
作者 Hong-Kui Ge Liu Yang +4 位作者 ying-hao shen Kai Ren Fan-Bao Meng Wen-Ming Ji Shan Wu 《Petroleum Science》 SCIE CAS CSCD 2015年第4期636-650,共15页
Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix... Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix imbibition capacity and rate helps to determine the frac- turing fluid volume, optimize the flowback design, and to analyze the influences on the production of shale gas. Imbibition experiments were conducted on shale samples from the Sichuan Basin, and some tight sandstone samples from the Ordos Basin. Tight volcanic samples from the Songliao Basin were also investigated for comparison. The effects of porosity, clay minerals, surfactants, and KC1 solutions on the matrix imbibition capacity and rate were systematically investigated. The results show that the imbibition characteristic of tight rocks can be characterized by the imbibition curve shape, the imbibition capacity, the imbibition rate, and the diffusion rate. The driving forces of water imbibition are the capillary pressure and the clay absorption force. For the tight rocks with low clay contents, the imbibition capacity and rate are positively correlated with the porosity. For tight rocks with high clay content, the type and content of clay minerals are the most impor- tant factors affecting the imbibition capacity. The imbibed water volume normalized by the porosity increases with an increasing total clay content. Smectite and illite/smectite tend to greatly enhance the water imbibition capacity. Furthermore, clay-rich tight rocks can imbibe a volume of water greater than their measured pore volume. The aver- age ratio of the imbibed water volume to the pore volume is approximately 1.1 in the Niutitang shale, 1.9 in the Lujiaping shale, 2.8 in the Longmaxi shale, and 4.0 in the Yingcheng volcanic rock, and this ratio can be regarded as a parameter that indicates the influence of clay. In addition, surfactants can change the imbibition capacity due to alteration of the capillary pressure and wettability. A 10 wt% KC1 solution can inhibit clay absorption to reduce the imbibition capacity. 展开更多
关键词 Imbibition . Shale Fracturing fluid Capillary pressure CLAY
在线阅读 下载PDF
Influence of gravel content and cement on conglomerate fracture 被引量:1
2
作者 Zhen-Xin Zhang Hong-Kui Ge +4 位作者 Jjian-Bo Wang Jian-Tong Liu Dun-Qing Liu Wei-Wei Teng ying-hao shen 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1724-1741,共18页
Tight reservoirs are typically developed by horizontal wells and multi-stage hydraulic fracturing.The conglomerate reservoir is one type of tight reservoirs,which is different from homogeneous rock,such as tight sands... Tight reservoirs are typically developed by horizontal wells and multi-stage hydraulic fracturing.The conglomerate reservoir is one type of tight reservoirs,which is different from homogeneous rock,such as tight sandstone.This is because that the existence of gravels makes conglomerate have strong hetero-geneity.Thus,it is difficult to grasp the fracture mechanism and the law of fracture propagation of conglomerate,which limits the efficient development of the conglomerate reservoir.In this paper,the fracture characteristics and factors influencing the fracturing of Mahu conglomerate were studied by uniaxial compression,acoustic emission monitoring and X-ray computed tomography(CT)scanning experiments.The results show that the fracture characteristics of conglomerates are influenced by the gravel content and cement.The conglomerate in the study area is mainly divided into carbonate cemented conglomerate and clay cemented conglomerate.The fracture complexity of carbonate cemented conglomerate first increases and then decreases with increasing gravel content.However,for clay cemented conglomerates,the fracture complexity increases over the gravel content.The crack development stress is a significant parameter in the crack assessment of conglomerates.This study is useful to understand the influence of meso-fabric characteristics of conglomerates on their fracturing and crack evolution and guides the design of hydraulic fracturing. 展开更多
关键词 CONGLOMERATE Mechanical property Fracture characteristics Crack evolution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部