Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and...Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.展开更多
To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfa...To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.展开更多
The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals an...The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.展开更多
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern...Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.展开更多
Dissipative soliton resonance(DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to stu...Dissipative soliton resonance(DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to study DSR in a single mode-locked laser in these different dispersion regimes. This is achieved by virtue of a waveshaper which can control the laser dispersion readily using software, avoiding the usual tedious cutback method. We find that dispersion has a negligible effect on DSR since the pulse duration keeps constant while dispersion is varied. Moreover, we examine the dynamics of DSR on the parameters of the SA including modulation depth and saturation power, and find that the pulse duration can be changed in a large range when the saturation power is decreased. Our numerical simulations could be important to guide relative experimental studies.展开更多
We investigate high-pressure phase diagrams of Pr–N compounds by proposing five stable structures(PnmaPr N,Ⅰ4/mmm-PrN_(2),C2/m-PrN_(3),P■-PrN_(4),and R3-PrN_(8))and two metastable structures(P■-PrN_(6)and P■-PrN_...We investigate high-pressure phase diagrams of Pr–N compounds by proposing five stable structures(PnmaPr N,Ⅰ4/mmm-PrN_(2),C2/m-PrN_(3),P■-PrN_(4),and R3-PrN_(8))and two metastable structures(P■-PrN_(6)and P■-PrN_(10)).The P■-PrN_(6)with the N14-ring layer and R3-PrN_(8)with the N18-ring layer can be quenched to ambient conditions.For the P■-PrN_(10),the N_(22)-ring layer structure transfers into infinite chains with the pressure quenched to ambient pressure.Remarkably,a novel polynitrogen h R8-N designed by the excision of Pr atoms from R3-PrN_(8)is obtained and can be quenched to ambient conditions.The N-rich structures of P■-PrN_(6),R3-PrN_(8),c-PrN_(10)and the solid pure nitrogen structure exhibit outstanding properties of energy density and explosive performance.展开更多
The structure of light diquarks plays a crucial role in formation of exotic hadrons beyond the conventional quark model, especially with regard to the line shapes of bottomed hadron decays. We study the two-body hadro...The structure of light diquarks plays a crucial role in formation of exotic hadrons beyond the conventional quark model, especially with regard to the line shapes of bottomed hadron decays. We study the two-body hadronic weak decays of bottomed baryons and bottomed mesons to probe the light diquark structure and to pin down the quark–quark correlations in the diquark picture. It is found that the light diquark does not favor a compact structure. For instance, the isoscalar diquark [ud] in Λ_(b)^(0) can be easily split and rearranged to form ■via the color-suppressed transition. This provides a hint that the hidden charm pentaquark states produced in Λ_(b)^(0) decays could be the ■chadronic molecular candidates. This quantitative study resolves the apparent conflicts between the production mechanism and the molecular nature of these P_(c) states observed in experiment.展开更多
BACKGROUND: Stroke is the leading cause of death and long-term disability. This study was undertaken to investigate the factors influencing daily activities of patients with cerebral infarction so as to take interven...BACKGROUND: Stroke is the leading cause of death and long-term disability. This study was undertaken to investigate the factors influencing daily activities of patients with cerebral infarction so as to take interventional measures earlier to improve their daily activities.METHODS: A total of 149 patients with first-episode cerebral infarction were recruited into this prospective study. They were admitted to the Encephalopathy Center, Department of Neurology, the First Affiliated Hospital of Wenzhou Medical College in Zhejiang Province from August 2008 to December 2008. The baseline characteristics of the patients and cerebral infarction risk factors on the first day of admission were recorded. White blood cell (WBC) count, plasma glucose (PG), and many others of laboratory targets were collected in the next morning. Barthel index (BI) was calculated at 2 weeks and 3 months respectively after onset of the disease at the outpatient clinic or by telephone call. Lung infection, urinary tract infection and atrial fibrillation if any were recorded on admission. The National Institute of Health Stroke Scale (NIHSS) scores and the GCS scores were recorded within 24 hours on and after admission, at the second week, and at the third month after the onset of cerebral infarction respectively.RESULTS: The factors of BI at 2 weeks and 3 months after onset were the initial PG level, WBC count and initial NIHSS scores. Besides, urinary tract infection on admission was also the factor for BI at 3 months.CONCLUSION: Active measures should be taken to control these factors to improve the daily activities of patients with cerebral infarction.展开更多
基金supported by the National Key Research and Development Program of China(2016YFD0600201)the National Nonprofit Institute Research Grant of CAF(CAFYBB2017ZB003)+1 种基金the National Natural Science Foundation of China(3187071631670720)。
文摘Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.
基金funded by National Key Research and development project(2022YFD2201001)Project for Applied TechnologyResearch and Development in Heilongjiang Province(GA19C006).
文摘To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.
基金supported by the National Key Research and Development Project(Grant No.2018YFC2001100).
文摘The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.
基金the National Natural Science Foundation of China(Nos.52272046,52090030,52090031,52122301,51973191)the Natural Science Foundation of Zhejiang Province(LR23E020003)+4 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2021SZ-FR004,2022SZ-TD011,2022SZ-TD012,2022SZ-TD014)Hundred Talents Program of Zhejiang University(188020*194231701/113,112300+1944223R3/003,112300+1944223R3/004)the Fundamental Research Funds for the Central Universities(Nos.226-2023-00023,226-2023-00082,2021FZZX001-17,K20200060)National Key R&D Program of China(NO.2022YFA1205300,NO.2022YFA1205301,NO.2020YFF0204400,NO.2022YFF0609801)“Pioneer”and“Leading Goose”R&D Program of Zhejiang 2023C01190.
文摘Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.
基金Project supported by the Innovation Program for Quantum Science and Technology(Grant No.2023ZD0301000)the National Natural Science Foundation of China(Grant Nos.11621404,11561121003,11727812,61775059,12074122,62022033,and 11704123)+2 种基金Sustainedly supported by the National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKT2022KL504008)the Shanghai Natural Science Foundation(Grant No.23ZR1419000)the National Key Laboratory Foundation of China(Grant No.6142411196307)。
文摘Dissipative soliton resonance(DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to study DSR in a single mode-locked laser in these different dispersion regimes. This is achieved by virtue of a waveshaper which can control the laser dispersion readily using software, avoiding the usual tedious cutback method. We find that dispersion has a negligible effect on DSR since the pulse duration keeps constant while dispersion is varied. Moreover, we examine the dynamics of DSR on the parameters of the SA including modulation depth and saturation power, and find that the pulse duration can be changed in a large range when the saturation power is decreased. Our numerical simulations could be important to guide relative experimental studies.
基金financially supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(Grant Nos.12174143 and U2032215)。
文摘We investigate high-pressure phase diagrams of Pr–N compounds by proposing five stable structures(PnmaPr N,Ⅰ4/mmm-PrN_(2),C2/m-PrN_(3),P■-PrN_(4),and R3-PrN_(8))and two metastable structures(P■-PrN_(6)and P■-PrN_(10)).The P■-PrN_(6)with the N14-ring layer and R3-PrN_(8)with the N18-ring layer can be quenched to ambient conditions.For the P■-PrN_(10),the N_(22)-ring layer structure transfers into infinite chains with the pressure quenched to ambient pressure.Remarkably,a novel polynitrogen h R8-N designed by the excision of Pr atoms from R3-PrN_(8)is obtained and can be quenched to ambient conditions.The N-rich structures of P■-PrN_(6),R3-PrN_(8),c-PrN_(10)and the solid pure nitrogen structure exhibit outstanding properties of energy density and explosive performance.
基金partly supported by the National Natural Science Foundation of China (Grant Nos. 12375073, 12035007, 12205106, and 12105028)Guangdong Provincial Fund (Grant No. 2019QN01X172)+2 种基金Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030008)the NSFC and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the funds provided to the Sino-German Collaborative Research Center TRR110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 12070131001, DFG Project-ID 196253076-TRR 110)supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20200980)
文摘The structure of light diquarks plays a crucial role in formation of exotic hadrons beyond the conventional quark model, especially with regard to the line shapes of bottomed hadron decays. We study the two-body hadronic weak decays of bottomed baryons and bottomed mesons to probe the light diquark structure and to pin down the quark–quark correlations in the diquark picture. It is found that the light diquark does not favor a compact structure. For instance, the isoscalar diquark [ud] in Λ_(b)^(0) can be easily split and rearranged to form ■via the color-suppressed transition. This provides a hint that the hidden charm pentaquark states produced in Λ_(b)^(0) decays could be the ■chadronic molecular candidates. This quantitative study resolves the apparent conflicts between the production mechanism and the molecular nature of these P_(c) states observed in experiment.
文摘BACKGROUND: Stroke is the leading cause of death and long-term disability. This study was undertaken to investigate the factors influencing daily activities of patients with cerebral infarction so as to take interventional measures earlier to improve their daily activities.METHODS: A total of 149 patients with first-episode cerebral infarction were recruited into this prospective study. They were admitted to the Encephalopathy Center, Department of Neurology, the First Affiliated Hospital of Wenzhou Medical College in Zhejiang Province from August 2008 to December 2008. The baseline characteristics of the patients and cerebral infarction risk factors on the first day of admission were recorded. White blood cell (WBC) count, plasma glucose (PG), and many others of laboratory targets were collected in the next morning. Barthel index (BI) was calculated at 2 weeks and 3 months respectively after onset of the disease at the outpatient clinic or by telephone call. Lung infection, urinary tract infection and atrial fibrillation if any were recorded on admission. The National Institute of Health Stroke Scale (NIHSS) scores and the GCS scores were recorded within 24 hours on and after admission, at the second week, and at the third month after the onset of cerebral infarction respectively.RESULTS: The factors of BI at 2 weeks and 3 months after onset were the initial PG level, WBC count and initial NIHSS scores. Besides, urinary tract infection on admission was also the factor for BI at 3 months.CONCLUSION: Active measures should be taken to control these factors to improve the daily activities of patients with cerebral infarction.