Lithium-sulfur(Li-S) battery is one of the best candidates for the next-generation energy storage system due to its high theoretical capacity(1675 mA h-1),low cost and environment friendliness.However,lithium(Li) dend...Lithium-sulfur(Li-S) battery is one of the best candidates for the next-generation energy storage system due to its high theoretical capacity(1675 mA h-1),low cost and environment friendliness.However,lithium(Li) dendrites formation and polysulfide shuttle effect are two major challenges that limit the commercialization of Li-S batteries.Here we design a facile bifunctional interlayer of gelatin-based fibers(GFs),aiming to protect the Li anode surface from the dendrites growth and also hinder the polysulfide shuttle effect.We reveal that the 3D structural network of GFs layer with abundant polar sites helps to homogenize Li-ion flux,leading to uniform Li-ion deposition.Meanwhile,the polar moieties also immobilize the lithium polysulfides and protect the Li metal from the side-reaction.As a result,the anodeprotected batteries have shown significantly enhanced performance.A high coulombic efficiency of 96% after 160 cycles has been achieved in the Li-Cu half cells.The Li-Li symmetric cells exhibit a prolonged lifespan for 800 h with voltage hysteresis(10 mV).With the as-prepared GFs layer,the Li-S battery shows approximately 14% higher capacity retention than the pristine battery at 0.5 C after 100 cycles.Our work presents that this gelatin-based bi-functional interlayer provides a viable strategy for the manufacturing of advanced Li-S batteries.展开更多
Lithium-sulfur(Li-S)batteries have been recognized as one of the most promising candidates for nextgeneration portable electronic devices,owing to their extremely high energy density and low cost.However,the dissoluti...Lithium-sulfur(Li-S)batteries have been recognized as one of the most promising candidates for nextgeneration portable electronic devices,owing to their extremely high energy density and low cost.However,the dissolution of lithium polysulfides(LiPSs)and consequent"shuttle effect"seriously hinder the practical deployment of Li-S batteries.Herein,multi-metal oxide nanorods named attapulgite are proposed as multifunctional ionic sieve to immobilize LiPSs and further promote the regulation of LiPSs.Attapulgite,consisting of Al,Mg,Fe,Si and O ions,possesses more polar sites to immobilize LiPSs in comparison with single metal oxides.In addition,the catalytic nature(Fe ions)of attapulgite avails the LiPSs conversion reaction,which is further confirmed by the linear sweep voltammetry and electrochemical impedance spectroscopy.Benefited from the synergistic effect of multi-metal oxide and conductive carbon,the Li-S battery with the modified separator delivers remarkable discharge capacities of 1059.4 mAh g-1 and 792.5 mAh g-1 for the first and 200th cycle at 0.5 C,respectively.The work presents an effective way to improve the electrochemical performance of Li-S batteries by employing attapulgite nanorods assisted separator surface engineering.展开更多
To address the corrosion and dendrite issues of lithium metal anodes, a protective layer was ex-situ constructed by P4S10 modification. It was determined by X-ray photoelectron spectroscopy and Raman spectra that the ...To address the corrosion and dendrite issues of lithium metal anodes, a protective layer was ex-situ constructed by P4S10 modification. It was determined by X-ray photoelectron spectroscopy and Raman spectra that the main constituents of the protective layer were P4S10, Li3PS4 and other LixPySztype derivatives. The protective layer was proved to be effective to stabilize the interphase of lithium metal. With the modified Li anodes, symmetric cells could deliver stable Li plating/stripping for 16000 h;Li–S batteries exhibited a specific capacity of 520 m A h g-1 after 200 cycles at 1000 m A g-1 with average Coulombic efficiency of 97.9%. Therefore, introducing LixPySzbased layer to protect Li anode provides a new strategy for the improvement of Li metal batteries.展开更多
Lithium-sulfur(Li-S)batteries are promising candidates for next-generation energy storage systems owing to their high energy density and low cost.However,critical challenges including severe shuttling of lithium polys...Lithium-sulfur(Li-S)batteries are promising candidates for next-generation energy storage systems owing to their high energy density and low cost.However,critical challenges including severe shuttling of lithium polysulfides(LiPSs)and sluggish redox kinetics limit the practical application of Li-S batteries.Carbon nitrides(C_(x)N_(y)),represented by graphitic carbon nitride(g-C_(3)N_(4)),provide new opportunities for overcoming these challenges.With a graphene-like structure and high pyridinic-N content,g-C_(3)N_(4) can effectively immobilize LiPSs and enhance the redox kinetics of S species.In addition,its structure and properties including electronic conductivity and catalytic activity can be regulated by simple methods that facilitate its application in Li-S batteries.Here,the recent progress of applying C_(x)N_(y)-based materials including the optimized g-C_(3)N_(4),g-C_(3)N_(4)-based composites,and other novel C_(x)N_(y) materials is systematically reviewed in Li-S batteries,with a focus on the structure-activity relationship.The limitations of existing C_(x)N_(y)-based materials are identified,and the perspectives on the rational design of advanced C_(x)N_(y)-based materials are provided for high-performance Li-S batteries.展开更多
基金supported by the National Natural Science Foundation of China (No. 51861165101)。
文摘Lithium-sulfur(Li-S) battery is one of the best candidates for the next-generation energy storage system due to its high theoretical capacity(1675 mA h-1),low cost and environment friendliness.However,lithium(Li) dendrites formation and polysulfide shuttle effect are two major challenges that limit the commercialization of Li-S batteries.Here we design a facile bifunctional interlayer of gelatin-based fibers(GFs),aiming to protect the Li anode surface from the dendrites growth and also hinder the polysulfide shuttle effect.We reveal that the 3D structural network of GFs layer with abundant polar sites helps to homogenize Li-ion flux,leading to uniform Li-ion deposition.Meanwhile,the polar moieties also immobilize the lithium polysulfides and protect the Li metal from the side-reaction.As a result,the anodeprotected batteries have shown significantly enhanced performance.A high coulombic efficiency of 96% after 160 cycles has been achieved in the Li-Cu half cells.The Li-Li symmetric cells exhibit a prolonged lifespan for 800 h with voltage hysteresis(10 mV).With the as-prepared GFs layer,the Li-S battery shows approximately 14% higher capacity retention than the pristine battery at 0.5 C after 100 cycles.Our work presents that this gelatin-based bi-functional interlayer provides a viable strategy for the manufacturing of advanced Li-S batteries.
基金supported by the National Natural Science Foundation of China(Nos.51861165101,51822706,51777200)Beijing Natural Science Foundation(No.JQ19012)DNL Cooperation Fund,CAS(DNL201912)。
文摘Lithium-sulfur(Li-S)batteries have been recognized as one of the most promising candidates for nextgeneration portable electronic devices,owing to their extremely high energy density and low cost.However,the dissolution of lithium polysulfides(LiPSs)and consequent"shuttle effect"seriously hinder the practical deployment of Li-S batteries.Herein,multi-metal oxide nanorods named attapulgite are proposed as multifunctional ionic sieve to immobilize LiPSs and further promote the regulation of LiPSs.Attapulgite,consisting of Al,Mg,Fe,Si and O ions,possesses more polar sites to immobilize LiPSs in comparison with single metal oxides.In addition,the catalytic nature(Fe ions)of attapulgite avails the LiPSs conversion reaction,which is further confirmed by the linear sweep voltammetry and electrochemical impedance spectroscopy.Benefited from the synergistic effect of multi-metal oxide and conductive carbon,the Li-S battery with the modified separator delivers remarkable discharge capacities of 1059.4 mAh g-1 and 792.5 mAh g-1 for the first and 200th cycle at 0.5 C,respectively.The work presents an effective way to improve the electrochemical performance of Li-S batteries by employing attapulgite nanorods assisted separator surface engineering.
基金financially supported by the National Key Research and Development Program of China(no.2016YFB0100200)Beijing Municipal Science and Technology Project(no.Z181100004518001)。
文摘To address the corrosion and dendrite issues of lithium metal anodes, a protective layer was ex-situ constructed by P4S10 modification. It was determined by X-ray photoelectron spectroscopy and Raman spectra that the main constituents of the protective layer were P4S10, Li3PS4 and other LixPySztype derivatives. The protective layer was proved to be effective to stabilize the interphase of lithium metal. With the modified Li anodes, symmetric cells could deliver stable Li plating/stripping for 16000 h;Li–S batteries exhibited a specific capacity of 520 m A h g-1 after 200 cycles at 1000 m A g-1 with average Coulombic efficiency of 97.9%. Therefore, introducing LixPySzbased layer to protect Li anode provides a new strategy for the improvement of Li metal batteries.
基金The authors acknowledge funding from National Natural Science Foundation of China(No.51861165101).
文摘Lithium-sulfur(Li-S)batteries are promising candidates for next-generation energy storage systems owing to their high energy density and low cost.However,critical challenges including severe shuttling of lithium polysulfides(LiPSs)and sluggish redox kinetics limit the practical application of Li-S batteries.Carbon nitrides(C_(x)N_(y)),represented by graphitic carbon nitride(g-C_(3)N_(4)),provide new opportunities for overcoming these challenges.With a graphene-like structure and high pyridinic-N content,g-C_(3)N_(4) can effectively immobilize LiPSs and enhance the redox kinetics of S species.In addition,its structure and properties including electronic conductivity and catalytic activity can be regulated by simple methods that facilitate its application in Li-S batteries.Here,the recent progress of applying C_(x)N_(y)-based materials including the optimized g-C_(3)N_(4),g-C_(3)N_(4)-based composites,and other novel C_(x)N_(y) materials is systematically reviewed in Li-S batteries,with a focus on the structure-activity relationship.The limitations of existing C_(x)N_(y)-based materials are identified,and the perspectives on the rational design of advanced C_(x)N_(y)-based materials are provided for high-performance Li-S batteries.