Composite supports Zr0.5Al0.5O1.75 modified by metal oxides, such as La2O3, ZnO, Y2O3 or BaO, were prepared by co-precipitation method, and palladium catalysts supported on the modified composite supports were prepare...Composite supports Zr0.5Al0.5O1.75 modified by metal oxides, such as La2O3, ZnO, Y2O3 or BaO, were prepared by co-precipitation method, and palladium catalysts supported on the modified composite supports were prepared by impregnation method. Their properties were characterized by X-ray diffraction (XRD), NH3 temperature-programmed desorption (NH3-TPD), He temperature-programmed reduction (He-TPR), N2 adsorption/desorption, and CO-chemisorption. The catalytic activity and the resistance to water poisoning of the prepared Pd catalysts were tested in a simulated exhaust gas from lean-burn natural gas vehicles with and without water vapor. The results demonstrated that the modified supports had an apparent effect on the performance of Pd catalysts, compared with the Pd catalyst supported on the unmodified ZrA1. The addition of ZnO or Y203 promoted the conversion of CH4. In the absence of water vapor, Pd/ZnZrA1 exhibited the best activity for CH4 conversion with the light-off temperature (Tso) of 275 ℃ and the complete conversion temperature (T90) of 314 ℃, respectively. However, in the presence of water vapor, Pd/YZrA1 was the best one over which the light-off temperature (Tso) of methane was 339 ℃ and the complete conversion temperature (T90) was 371 ℃. These results indicated that Pd catalyst supported on the modified composite ZrA1 support showed excellent catalytic activity at low temperature and high resistance to H20 poisoning for the exhaust purification of lean-burn natural gas vehicles.展开更多
Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and N...Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperatnre-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. The catalysts reported in this work also have significant potential in industrial application because of their high performance and low cost.展开更多
Palladium catalysts are supported on TiO2, ZrO2, A12O3, Zro.sAlo.501.75 and TiO2-Zro.sAlo.501.75 prepared by co-precipitation method, re- spectively. Catalytic activities for methane and CO oxidation are evaluated in ...Palladium catalysts are supported on TiO2, ZrO2, A12O3, Zro.sAlo.501.75 and TiO2-Zro.sAlo.501.75 prepared by co-precipitation method, re- spectively. Catalytic activities for methane and CO oxidation are evaluated in a gas mixture that simulated the exhaust from lean-burn natural gas vehicles (NGVs). Pd/TiO2-Zro.sAlo.501.75 performs the best catalytic activity among the tested five catalysts. For CH4, the light-off temperature (Tso) is 254 ℃, and the complete conversion temperature (Tgo) is 280 ℃; for CO, Tso is 84 ℃, and Tgo was 96 ℃. Various techniques, including N2 adsorption-desorption, X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), X-ray photoelec- tron spectroscopy (XPS), and scanning electron microscopy (SEM) are employed to characterize the effect of supports on the physicochemical properties of prepared catalysts. N2 adsorption-desorption and SEM show that TiO2-Zro.5Al0.501.75 expresses uniform nano-particles and large meso-pore diameters of 26 nm. H2-TPR and XRD indicate that PdO is well dispersed on the supports and strongly interacted with each other. The results of XPS show that the electron density around PdO and the proportion of active oxygen on TiO2-Zro.sAl0.501.75 are maxima among the five supports.展开更多
Pd/Ce0.8Zro.202 catalysts modified by cobalt were prepared by a sequential impregnation method and characterized by X-ray powder diffraction (XRD), N2 adsorption/desorption (Brunauer-Emmet-Teller), oxygen storage ...Pd/Ce0.8Zro.202 catalysts modified by cobalt were prepared by a sequential impregnation method and characterized by X-ray powder diffraction (XRD), N2 adsorption/desorption (Brunauer-Emmet-Teller), oxygen storage capacity (OSC), CO-chemisorption, H2-temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The effect of Co on the performance of methanol decomposition was eval- uated at a fixed-bed microreactor. The results showed that the addition of Co can improve the oxygen storage capacity of the catalyst and the dispersion of Pd. XPS results indicated that Pd was in a partly oxidized (Pd6+, 1〈8〈2) state and Co2+ was present in Pd catalysts modified by Co. A 90% conversion of methanol was achieved at around 280 ℃ over Pd-Co/Ceo.8Zro.202 catalyst which was 20 ℃ lower than that over Pd/Ceo.sZro.202, indicating that both pd6+and Co2+ play an important role in improving the catalytic activity of methanol decomposition.展开更多
基金supported by the National Natural Science Foundation of China (21173153)Science and Technology Department of Science and Technology Support Project of Sichuan Povince,China (2011GZ0035)
文摘Composite supports Zr0.5Al0.5O1.75 modified by metal oxides, such as La2O3, ZnO, Y2O3 or BaO, were prepared by co-precipitation method, and palladium catalysts supported on the modified composite supports were prepared by impregnation method. Their properties were characterized by X-ray diffraction (XRD), NH3 temperature-programmed desorption (NH3-TPD), He temperature-programmed reduction (He-TPR), N2 adsorption/desorption, and CO-chemisorption. The catalytic activity and the resistance to water poisoning of the prepared Pd catalysts were tested in a simulated exhaust gas from lean-burn natural gas vehicles with and without water vapor. The results demonstrated that the modified supports had an apparent effect on the performance of Pd catalysts, compared with the Pd catalyst supported on the unmodified ZrA1. The addition of ZnO or Y203 promoted the conversion of CH4. In the absence of water vapor, Pd/ZnZrA1 exhibited the best activity for CH4 conversion with the light-off temperature (Tso) of 275 ℃ and the complete conversion temperature (T90) of 314 ℃, respectively. However, in the presence of water vapor, Pd/YZrA1 was the best one over which the light-off temperature (Tso) of methane was 339 ℃ and the complete conversion temperature (T90) was 371 ℃. These results indicated that Pd catalyst supported on the modified composite ZrA1 support showed excellent catalytic activity at low temperature and high resistance to H20 poisoning for the exhaust purification of lean-burn natural gas vehicles.
基金supported by the National Natural Science Foundation of China (No. 20773090, 20803049)the National High Technology Researchand Development Program of China (863 Program, No. 2006AA06Z347)the Specialized Research Fund for the Doctoral Program of Higher Education(20070610026)
文摘Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperatnre-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. The catalysts reported in this work also have significant potential in industrial application because of their high performance and low cost.
基金supported by the National Natural Science Foundation of China(21173153)
文摘Palladium catalysts are supported on TiO2, ZrO2, A12O3, Zro.sAlo.501.75 and TiO2-Zro.sAlo.501.75 prepared by co-precipitation method, re- spectively. Catalytic activities for methane and CO oxidation are evaluated in a gas mixture that simulated the exhaust from lean-burn natural gas vehicles (NGVs). Pd/TiO2-Zro.sAlo.501.75 performs the best catalytic activity among the tested five catalysts. For CH4, the light-off temperature (Tso) is 254 ℃, and the complete conversion temperature (Tgo) is 280 ℃; for CO, Tso is 84 ℃, and Tgo was 96 ℃. Various techniques, including N2 adsorption-desorption, X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), X-ray photoelec- tron spectroscopy (XPS), and scanning electron microscopy (SEM) are employed to characterize the effect of supports on the physicochemical properties of prepared catalysts. N2 adsorption-desorption and SEM show that TiO2-Zro.5Al0.501.75 expresses uniform nano-particles and large meso-pore diameters of 26 nm. H2-TPR and XRD indicate that PdO is well dispersed on the supports and strongly interacted with each other. The results of XPS show that the electron density around PdO and the proportion of active oxygen on TiO2-Zro.sAl0.501.75 are maxima among the five supports.
基金supported by the National Natural Science Foundation of China(No.21173153)Sichuan Province Science and Technology Support Projects(2012FZ0008)
文摘Pd/Ce0.8Zro.202 catalysts modified by cobalt were prepared by a sequential impregnation method and characterized by X-ray powder diffraction (XRD), N2 adsorption/desorption (Brunauer-Emmet-Teller), oxygen storage capacity (OSC), CO-chemisorption, H2-temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The effect of Co on the performance of methanol decomposition was eval- uated at a fixed-bed microreactor. The results showed that the addition of Co can improve the oxygen storage capacity of the catalyst and the dispersion of Pd. XPS results indicated that Pd was in a partly oxidized (Pd6+, 1〈8〈2) state and Co2+ was present in Pd catalysts modified by Co. A 90% conversion of methanol was achieved at around 280 ℃ over Pd-Co/Ceo.8Zro.202 catalyst which was 20 ℃ lower than that over Pd/Ceo.sZro.202, indicating that both pd6+and Co2+ play an important role in improving the catalytic activity of methanol decomposition.