The development of alkaline fuel cells is moving forward at an accelerated pace,and the application of ether-free bonded polymers to anion exchange membranes(AEMs)has been widely investigated.However,the question of ...The development of alkaline fuel cells is moving forward at an accelerated pace,and the application of ether-free bonded polymers to anion exchange membranes(AEMs)has been widely investigated.However,the question of the“trade-off”between AEM ionic conductivity and dimensional stability remains difficult.The strategy of inducing microphase separation to improve the performance of AEM has attracted much attention recently,but the design of optimal molecular structures is still being explored.Here,this work introduced different ratios of 3-bromo-1,1,1-trifluoroacetone(x=40,50,and 60)into the main chain of poly(p-terphenylene isatin).Because fluorinated groups have excellent hydrophobicity,hydrophilic hydroxyl-containing side chains are introduced to jointly adjust the formation of phase separation structure.The results show that PTI-PTF_(50)-NOH AEM with the appropriate fluorinated group ratio has the best ionic conductivity and alkali stability under the combined effect of both.It has an ionic conductivity of 133.83 mS cm^(-1)at 80°C.In addition,the OH-conductivity remains at 89%of the initial value at 80°C and 3 M KOH for 1056 h of immersion.The cell polarization curve based on PTI-PTF_(50)-NOH shows a power density of 734.76 mW cm^(-2)at a current density of 1807.7 mA cm^(-2).展开更多
We build a double quantum-dot system with Coulomb coupling and aim at studying connections among the entropy production,free energy,and information flow.By utilizing concepts in stochastic thermodynamics and graph the...We build a double quantum-dot system with Coulomb coupling and aim at studying connections among the entropy production,free energy,and information flow.By utilizing concepts in stochastic thermodynamics and graph theory analysis,Clausius and nonequilibrium free energy inequalities are built to interpret local second law of thermodynamics for subsystems.A fundamental set of cycle fluxes and affinities is identified to decompose two inequalities by using Schnakenberg's network theory.Results show that the thermodynamic irreversibility has energy-related and information-related contributions.A global cycle associated with the feedback-induced information flow would pump electrons against the bias voltage,which implements a Maxwell demon.展开更多
基金Natural Science Foundation of China(grant nos 22075031)Jilin Provincial Science&Technology Department(grant nos 20220201105GX)Jilin Provincial Development and Reform Commission(grant nos 2023C034-4)。
文摘The development of alkaline fuel cells is moving forward at an accelerated pace,and the application of ether-free bonded polymers to anion exchange membranes(AEMs)has been widely investigated.However,the question of the“trade-off”between AEM ionic conductivity and dimensional stability remains difficult.The strategy of inducing microphase separation to improve the performance of AEM has attracted much attention recently,but the design of optimal molecular structures is still being explored.Here,this work introduced different ratios of 3-bromo-1,1,1-trifluoroacetone(x=40,50,and 60)into the main chain of poly(p-terphenylene isatin).Because fluorinated groups have excellent hydrophobicity,hydrophilic hydroxyl-containing side chains are introduced to jointly adjust the formation of phase separation structure.The results show that PTI-PTF_(50)-NOH AEM with the appropriate fluorinated group ratio has the best ionic conductivity and alkali stability under the combined effect of both.It has an ionic conductivity of 133.83 mS cm^(-1)at 80°C.In addition,the OH-conductivity remains at 89%of the initial value at 80°C and 3 M KOH for 1056 h of immersion.The cell polarization curve based on PTI-PTF_(50)-NOH shows a power density of 734.76 mW cm^(-2)at a current density of 1807.7 mA cm^(-2).
基金Project supported by the National Natural Science Foundation(Grant No.11805159)the First Batch of National First-class Undergraduate Courses of China(2020)+1 种基金the Natural Science Foundation of Fujian Province,China(Grant No.2019J05003)Teaching Research Program of Thermodynamics and Statistical Physics in the Institution of Higher Education of China(2019).
文摘We build a double quantum-dot system with Coulomb coupling and aim at studying connections among the entropy production,free energy,and information flow.By utilizing concepts in stochastic thermodynamics and graph theory analysis,Clausius and nonequilibrium free energy inequalities are built to interpret local second law of thermodynamics for subsystems.A fundamental set of cycle fluxes and affinities is identified to decompose two inequalities by using Schnakenberg's network theory.Results show that the thermodynamic irreversibility has energy-related and information-related contributions.A global cycle associated with the feedback-induced information flow would pump electrons against the bias voltage,which implements a Maxwell demon.