期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Local Electric Fields Coupled with Cl^(−)Fixation Strategy for Improving Seawater Oxygen Reduction Reaction Performance
1
作者 yu-Rong Liu Miao Zhang +8 位作者 yan-hui yu Ya-Lin Liu Jing Li Xiao-Dong Shi Zhen-Ye Kang Dao-Xiong Wu Peng Rao Ying Liang Xin-Long Tian 《电化学(中英文)》 2025年第9期46-55,共10页
Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field c... Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field coupled with chloride ions(Cl-)fixation strategy in dual single-atom catalysts(DSACs)was proposed,and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte,with a high half-wave potential(E_(1/2))of 0.868 V and a good maximum power density(Pmax)of 182 mW·cm^(−2)in the assembled SZABs,much higher than those of the Pt/C catalyst(E_(1/2):0.846 V;Pmax:150 mW·cm^(−2)).The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl^(−)adsorption affinity than the Co sites,and preferentially adsorbs Cl^(−)in a seawater electrolyte during the ORR process,and thus constructs a low-concentration Cl^(−)local microenvironment through the common-ion exclusion effect,which prevents Cl^(−)adsorption and corrosion in the Co active centers,achieving impressive catalytic stability.In addition,the directional charge movement between Fe and Co atomic pairs establishes a local electric field,optimizing the adsorption energy of Co sites for oxygen-containing intermediates,and further improving the ORR activity. 展开更多
关键词 Seawater zinc-air battery Oxygen reduction reaction Local electric field Chloride ion fixation strategy Sin-gle-atom catalyst
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部