Electrochemical reduction of CO_(2) to fuels and chemicals is a viable strategy for CO_(2) utilization and renewable energy storage.Developing free-standing electrodes from robust and scalable electrocatalysts becomes...Electrochemical reduction of CO_(2) to fuels and chemicals is a viable strategy for CO_(2) utilization and renewable energy storage.Developing free-standing electrodes from robust and scalable electrocatalysts becomes highly desirable.Here,dense SnO_(2) nanoparticles are uniformly grown on three-dimensional(3D)fiber network of carbon cloth(CC)by a facile dip-coating and calcination method.Importantly,Zn modification strategy is employed to restrain the growth of long-range order of SnO_(2) lattices and to produce rich grain boundaries.The hybrid architecture can act as a flexible electrode for CO_(2)-to-formate conversion,which delivers a high partial current of 18.8 m A cm-2 with a formate selectivity of 80%at a moderate cathodic potential of-0.947 V vs.RHE.The electrode exhibits remarkable stability over a 16 h continuous operation.The superior performance is attributed to the synergistic effect of ultrafine SnO_(2) nanoparticles with abundant active sites and 3D fiber network of the electrode for efficient mass transport and electron transfer.The sizeable electrodes hold promise for industrial applications.展开更多
Efficient and robust single-atom catalysts(SACs)based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia(NRR)under ambient conditions.Herein,for the first ti...Efficient and robust single-atom catalysts(SACs)based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia(NRR)under ambient conditions.Herein,for the first time,a Mn-N-C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy.The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation.Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix,the catalyst exhibits excellent activity for NRR with high activity and selectivity,achieving a high Faradaic efficiency of 32.02%for ammonia synthesis at−0.45 V versus reversible hydrogen electrode.Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N_(2) adsorption,activation and selective reduction to NH_(3) by the distal mechanism.This work provides a simple synthesis process for Mn-N-C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites.展开更多
Biomolecules with a broad range of structure and heteroatom-containing groups offer a great opportunity for rational design of promising electrocatalysts via versatile chemistry.In this study,uniform folic acid-Co nan...Biomolecules with a broad range of structure and heteroatom-containing groups offer a great opportunity for rational design of promising electrocatalysts via versatile chemistry.In this study,uniform folic acid-Co nanotubes(FA-Co NTs) were hydrothermally prepared as sacrificial templates for highly porous Co and N co-doped carbon nanotubes(Co-N/CNTs) with well-controlled size and morphology.The formation mechanism of FA-Co NTs was investigated and FA-Co-hydrazine coordination interaction together with the H-bond interaction between FA molecules was characterized to be the driving force for growth of one-dimensional nanotubes.Such distinct metal-ligand interaction afforded the resultant CNTs rich Co-N_x sites,hierarchically porous structure and Co nanoparticle-embedded conductive network,thus an overall good electrocatalytic activity for oxygen reduction.Electrochemical tests showed that Co-N/CNTs-900 promoted an efficient 4 e ORR process with an onset potential of 0.908 V vs.RHE,a limiting current density of 5.66 mA cm^(-2) at 0.6 V and a H_2 O_2 yield lower than 5%,comparable to that of 20%Pt/C catalyst.Moreover,the catalyst revealed very high stability upon continuous operation and remarkable tolerance to methanol.展开更多
基金supported by the National Natural Science Foundation of China(51902204,22003041,21975163)Bureau of Industry and Information Technology of Shenzhen(201901171518)Shenzhen Science and Technology Program(KQTD20190929173914967)。
文摘Electrochemical reduction of CO_(2) to fuels and chemicals is a viable strategy for CO_(2) utilization and renewable energy storage.Developing free-standing electrodes from robust and scalable electrocatalysts becomes highly desirable.Here,dense SnO_(2) nanoparticles are uniformly grown on three-dimensional(3D)fiber network of carbon cloth(CC)by a facile dip-coating and calcination method.Importantly,Zn modification strategy is employed to restrain the growth of long-range order of SnO_(2) lattices and to produce rich grain boundaries.The hybrid architecture can act as a flexible electrode for CO_(2)-to-formate conversion,which delivers a high partial current of 18.8 m A cm-2 with a formate selectivity of 80%at a moderate cathodic potential of-0.947 V vs.RHE.The electrode exhibits remarkable stability over a 16 h continuous operation.The superior performance is attributed to the synergistic effect of ultrafine SnO_(2) nanoparticles with abundant active sites and 3D fiber network of the electrode for efficient mass transport and electron transfer.The sizeable electrodes hold promise for industrial applications.
基金The authors thank the financial support from the National Natural Science Foundation of China(No.51902204,52001214,21975163)Bureau of Industry and Information Technology of Shenzhen(No.201901171518)Shenzhen Science and Technology Program(KQTD20190929173914967).
文摘Efficient and robust single-atom catalysts(SACs)based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia(NRR)under ambient conditions.Herein,for the first time,a Mn-N-C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy.The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation.Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix,the catalyst exhibits excellent activity for NRR with high activity and selectivity,achieving a high Faradaic efficiency of 32.02%for ammonia synthesis at−0.45 V versus reversible hydrogen electrode.Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N_(2) adsorption,activation and selective reduction to NH_(3) by the distal mechanism.This work provides a simple synthesis process for Mn-N-C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites.
基金supported by the National Natural Science Foundation of China (Nos. 51902204, 21975163)the Bureau of Industry and Information Technology of Shenzhen (No. 201901171518)the support provided by Instrumental Analysis Center of Shenzhen University (Xili Campus)。
文摘Biomolecules with a broad range of structure and heteroatom-containing groups offer a great opportunity for rational design of promising electrocatalysts via versatile chemistry.In this study,uniform folic acid-Co nanotubes(FA-Co NTs) were hydrothermally prepared as sacrificial templates for highly porous Co and N co-doped carbon nanotubes(Co-N/CNTs) with well-controlled size and morphology.The formation mechanism of FA-Co NTs was investigated and FA-Co-hydrazine coordination interaction together with the H-bond interaction between FA molecules was characterized to be the driving force for growth of one-dimensional nanotubes.Such distinct metal-ligand interaction afforded the resultant CNTs rich Co-N_x sites,hierarchically porous structure and Co nanoparticle-embedded conductive network,thus an overall good electrocatalytic activity for oxygen reduction.Electrochemical tests showed that Co-N/CNTs-900 promoted an efficient 4 e ORR process with an onset potential of 0.908 V vs.RHE,a limiting current density of 5.66 mA cm^(-2) at 0.6 V and a H_2 O_2 yield lower than 5%,comparable to that of 20%Pt/C catalyst.Moreover,the catalyst revealed very high stability upon continuous operation and remarkable tolerance to methanol.