Developing efficient and stable electrocatalysts for the acidic oxygen evolution reaction (OER) is crucial yet challenging due to their sluggish kinetics and potential deactivation in harsh acidic environments.Herein,...Developing efficient and stable electrocatalysts for the acidic oxygen evolution reaction (OER) is crucial yet challenging due to their sluggish kinetics and potential deactivation in harsh acidic environments.Herein,we propose an electronic regulation approach involving the incorporation of trace Pt into SrIrO_(3) perovskite to improve its activity and longevity for OER in acidic media.Both experimental and theoretical results reveal that trace Pt incorporation effectively regulates the electronic structure of SrIrO_(3),lowering the energy barrier of OER and mitigating the Ir overoxidation.The optimized 2%PtSrIrO_(3) electrocatalyst demonstrates an ultralow overpotential of 228 mV at 10 mA cm^(-2)and maintains stable over 50 h in 0.5 M H_(2)SO_(4),rivaling most reported iridate perovskites.As a demonstration,the 2%Pt-SrIrO_(3)||Pt/C based electrolytic cell exhibits high electrochemical performance and robustness for practical acidic water splitting.This protocol offers an attractive strategy for electronic structure manipulation in electrocatalysts towards electrocatalytic applications.展开更多
Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly...Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly related to structure width, sea ice parameters, and clearing modes of broken ice. This paper proposes three clearing modes for broken ice acting on conical structures: complete clearing, temporary ice pile up, and ice pile up. In this paper, sea ice clearing modes and the formation requirements of dynamic ice force are analyzed to explore criteria determining wide/narrow ice-resistant conical structures. According to the direct measurement data of typical prototype structures, quantitative criteria of the ratio of a cone width at waterline(D) to sea ice thickness(h) is proposed. If the ratio is less than 30(narrow conical structure), broken ice is completely cleared and a dynamic ice force is produced; however, if the ratio is larger than 50(wide conical structure), the front stacking of broken ice or dynamic ice force will not occur.展开更多
基金supported by the financial support from the National Natural Science Foundation of China (No. 22075256&No. 21975229&No. 12262011)the Hainan Provincial Science and Technology Special Found (No. ZDYF2022SHFZ299)+1 种基金the Natural Science Foundation of Guangdong Province (No.2024A1515012235)the Shenzhen Science and Technology Program (No. JCYJ20220530162403008)。
文摘Developing efficient and stable electrocatalysts for the acidic oxygen evolution reaction (OER) is crucial yet challenging due to their sluggish kinetics and potential deactivation in harsh acidic environments.Herein,we propose an electronic regulation approach involving the incorporation of trace Pt into SrIrO_(3) perovskite to improve its activity and longevity for OER in acidic media.Both experimental and theoretical results reveal that trace Pt incorporation effectively regulates the electronic structure of SrIrO_(3),lowering the energy barrier of OER and mitigating the Ir overoxidation.The optimized 2%PtSrIrO_(3) electrocatalyst demonstrates an ultralow overpotential of 228 mV at 10 mA cm^(-2)and maintains stable over 50 h in 0.5 M H_(2)SO_(4),rivaling most reported iridate perovskites.As a demonstration,the 2%Pt-SrIrO_(3)||Pt/C based electrolytic cell exhibits high electrochemical performance and robustness for practical acidic water splitting.This protocol offers an attractive strategy for electronic structure manipulation in electrocatalysts towards electrocatalytic applications.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 41306087), Public Science and Technology Research Funds Projects of Ocean (Grant No. 201505019)
文摘Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly related to structure width, sea ice parameters, and clearing modes of broken ice. This paper proposes three clearing modes for broken ice acting on conical structures: complete clearing, temporary ice pile up, and ice pile up. In this paper, sea ice clearing modes and the formation requirements of dynamic ice force are analyzed to explore criteria determining wide/narrow ice-resistant conical structures. According to the direct measurement data of typical prototype structures, quantitative criteria of the ratio of a cone width at waterline(D) to sea ice thickness(h) is proposed. If the ratio is less than 30(narrow conical structure), broken ice is completely cleared and a dynamic ice force is produced; however, if the ratio is larger than 50(wide conical structure), the front stacking of broken ice or dynamic ice force will not occur.