The coupling of fast redox kinetics,high-energy density,and prolonged lifespan is a permanent aspiration for aqueous rechargeable zinc batteries,but which has been severely hampered by a narrow voltage range and subop...The coupling of fast redox kinetics,high-energy density,and prolonged lifespan is a permanent aspiration for aqueous rechargeable zinc batteries,but which has been severely hampered by a narrow voltage range and suboptimal compatibility between the electrolytes and electrodes.Here,we unprecedentedly introduced an electric ambipolar effect for synergistic manipulation on Zn^(2+)ternary-hydrated eutectic electrolyte(ZTE)enabling high-performance Zn-Br_(2)batteries.The electric ambipolar effect motivates strong dipole interactions among hydrated perchlorates and bipolar ligands of L-carnitine(L-CN)and sulfamide,which reorganized primary cations solvation sheath in a manner of forming Zn[(L-CN)(SA)(H_(2)O)_(4)]^(2+)configuration and dynamically restricting desolvated H2O molecules,thus ensuring a broadened electrochemical window of 2.9 V coupled with high ionic conductivity.Noticeably,L-CN affords an electrostatic shielding effect and an in situ construction of organic-inorganic interphase,endowing oriented Zn anode plating/stripping reversibly for over 2400 h.Therefore,with the synergy of electro/nucleophilicity and exceptional compatibility,the ZTE electrolyte dynamically boosts the conversion redox of Zn-Br_(2)batteries in terms of high specific capacity and stable cycling performance.These findings open a window for designing electrolytes with synergetic chemical stability and compatibility toward advanced zinc-ion batteries.展开更多
基金provided by the National Natural Science Foundation of China(Grant No.52373208 and 61831021)the ECNU Academic Innovation Promotion Program for Excellent Doctoral Students(YBNLTS2024-021).
文摘The coupling of fast redox kinetics,high-energy density,and prolonged lifespan is a permanent aspiration for aqueous rechargeable zinc batteries,but which has been severely hampered by a narrow voltage range and suboptimal compatibility between the electrolytes and electrodes.Here,we unprecedentedly introduced an electric ambipolar effect for synergistic manipulation on Zn^(2+)ternary-hydrated eutectic electrolyte(ZTE)enabling high-performance Zn-Br_(2)batteries.The electric ambipolar effect motivates strong dipole interactions among hydrated perchlorates and bipolar ligands of L-carnitine(L-CN)and sulfamide,which reorganized primary cations solvation sheath in a manner of forming Zn[(L-CN)(SA)(H_(2)O)_(4)]^(2+)configuration and dynamically restricting desolvated H2O molecules,thus ensuring a broadened electrochemical window of 2.9 V coupled with high ionic conductivity.Noticeably,L-CN affords an electrostatic shielding effect and an in situ construction of organic-inorganic interphase,endowing oriented Zn anode plating/stripping reversibly for over 2400 h.Therefore,with the synergy of electro/nucleophilicity and exceptional compatibility,the ZTE electrolyte dynamically boosts the conversion redox of Zn-Br_(2)batteries in terms of high specific capacity and stable cycling performance.These findings open a window for designing electrolytes with synergetic chemical stability and compatibility toward advanced zinc-ion batteries.