The growing energy concern all over the world has recognized hydrogen energy as the most promising renewable energy sources.Recently,electrocatalytic hydrogen evolution reaction(HER)by water splitting has been extensi...The growing energy concern all over the world has recognized hydrogen energy as the most promising renewable energy sources.Recently,electrocatalytic hydrogen evolution reaction(HER)by water splitting has been extensively studied with a focus on developing efficient electrocatalysts that can afford HER at overpotential with minimum power consumption.The two-dimensional transition metal carbides and nitride,also known as MXenes,are becoming the rising star in developing efficient electrocatalysts for HER,owing to their integrated chemical and electronic properties,e.g.,metallic conductivity,variety of redox-active transition metals,high hydrophilicity,and tunable surface functionalities.In this review,the recent progress about the fundamental understanding and materials engineering of MXenes-based electrocatalysts is summarized in concern with two aspects:i)the regulation of the intrinsic properties of MXenes,which include the composition,surface functionality,and defects;and ii)MXenes-based composites for HER process.In the end,we summarize the present challenges concerning the efficiency of MXenes-based HER electrocatalysts and propose the directions of future research efforts.展开更多
Low-temperature assembly of MXene nanosheets into three-dimensional(3D) robust aerogels addresses the crucial stability concern of the nano-building blocks during the fabrication process,which is of key importance for...Low-temperature assembly of MXene nanosheets into three-dimensional(3D) robust aerogels addresses the crucial stability concern of the nano-building blocks during the fabrication process,which is of key importance for transforming the fascinating properties at the nanoscale into the macroscopic scale for practical applications.Herein,suitable cross-linking agents(amino-propyltriethoxysilane,Mn^(2+),Fe^(2+),Zn^(2+),and Co^(2+)) as interfacial mediators to engineer the interlayer interactions are reported to realize the graphene oxide(GO)-assisted assembly of Ti_(3)C_(2)T_(x) MXene aerogel at room temperature.This elaborate aerogel construction not only suppresses the oxidation degradation of Ti_(3)C_(2)T_(x) but also generates porous aerogels with a high Ti_(3)C_(2)T_(x) content(87 wt%) and robustness,thereby guaranteeing the functional accessibility of Ti_(3)C_(2)T_(x) nanosheets and operational reliability as integrated functional materials.In combination with a further sulfur modification,the Ti_(3)C_(2)T_(x) aerogel electrode shows promising electrochemical performances as the freestanding anode for sodium-ion storage.Even at an ultrahigh loading mass of 12.3 mg cm^(-2),a pronounced areal capacity of 1.26 mAh cm^(-2) at a current density of 0.1 A g^(-1) has been achieved,which is of practical significance.This work conceptually suggests a new way to exert the utmost surface functionalities of MXenes in 3D monolithic form and can be an inspiring scaffold to promote the application of MXenes in different areas.展开更多
基金financially supported by the National Natural Science Foundation of China(NSFC,51572011)the Fundamental Research Funds for the Central Universities(buctrc201819)。
文摘The growing energy concern all over the world has recognized hydrogen energy as the most promising renewable energy sources.Recently,electrocatalytic hydrogen evolution reaction(HER)by water splitting has been extensively studied with a focus on developing efficient electrocatalysts that can afford HER at overpotential with minimum power consumption.The two-dimensional transition metal carbides and nitride,also known as MXenes,are becoming the rising star in developing efficient electrocatalysts for HER,owing to their integrated chemical and electronic properties,e.g.,metallic conductivity,variety of redox-active transition metals,high hydrophilicity,and tunable surface functionalities.In this review,the recent progress about the fundamental understanding and materials engineering of MXenes-based electrocatalysts is summarized in concern with two aspects:i)the regulation of the intrinsic properties of MXenes,which include the composition,surface functionality,and defects;and ii)MXenes-based composites for HER process.In the end,we summarize the present challenges concerning the efficiency of MXenes-based HER electrocatalysts and propose the directions of future research efforts.
基金This work was supported by the National Natural Science Foundation of China(52071137,51977071,51802040,and 21802020)the Science and Technology Innovation Program of Hunan Province(2021RC3066 and 2021RC3067)+1 种基金the Natural Science Foundation of Hunan Province(2020JJ3004 and 2020JJ4192)N.Zhang and X.Xie also acknowledge the financial support of the Fundamental Research Funds for the Central Universities.
文摘Low-temperature assembly of MXene nanosheets into three-dimensional(3D) robust aerogels addresses the crucial stability concern of the nano-building blocks during the fabrication process,which is of key importance for transforming the fascinating properties at the nanoscale into the macroscopic scale for practical applications.Herein,suitable cross-linking agents(amino-propyltriethoxysilane,Mn^(2+),Fe^(2+),Zn^(2+),and Co^(2+)) as interfacial mediators to engineer the interlayer interactions are reported to realize the graphene oxide(GO)-assisted assembly of Ti_(3)C_(2)T_(x) MXene aerogel at room temperature.This elaborate aerogel construction not only suppresses the oxidation degradation of Ti_(3)C_(2)T_(x) but also generates porous aerogels with a high Ti_(3)C_(2)T_(x) content(87 wt%) and robustness,thereby guaranteeing the functional accessibility of Ti_(3)C_(2)T_(x) nanosheets and operational reliability as integrated functional materials.In combination with a further sulfur modification,the Ti_(3)C_(2)T_(x) aerogel electrode shows promising electrochemical performances as the freestanding anode for sodium-ion storage.Even at an ultrahigh loading mass of 12.3 mg cm^(-2),a pronounced areal capacity of 1.26 mAh cm^(-2) at a current density of 0.1 A g^(-1) has been achieved,which is of practical significance.This work conceptually suggests a new way to exert the utmost surface functionalities of MXenes in 3D monolithic form and can be an inspiring scaffold to promote the application of MXenes in different areas.