Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures....Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.展开更多
An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipo...An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipole layer at the internal Helmholtz electrical double layers(HEDLs) under the preferential adsorption function of formate on Zn surface,reducing the occurrence of side reactions at phase interface.Meanwhile,free formate in HEDLs regulates the Zn^(2+) solvation sheath structure to accelerate the desolvation,transference,and deposition kinetics of Zn^(2+).Besides,the hydrolysis reaction of zinc formate increases the hydrogen evolution overpotential,inhibiting the thermodynamic tendency of hydrogen evolution.Consequently,it presents stable cycle for more than 2400 h at 5 mA cm^(-2),as well as an average Coulombic efficiency of 99.8% at 1 A g^(-1) after 800 cycles in the Zn‖VO_(2) full cell.The interphase engineering strategy zinc anode by organic small molecular brings new possibility towards high-performance aqueous zinc-ion batteries.展开更多
A-form DNA is one of the biologically active double helical structure.The study of A-DNA structure has an extensive application for developing the field of DNA packaging in biotechnology.In aqueous solution,the A-DNA ...A-form DNA is one of the biologically active double helical structure.The study of A-DNA structure has an extensive application for developing the field of DNA packaging in biotechnology.In aqueous solution,the A-DNA structure will have a free transformation,the A-DNA structure will be translated into B-form structure with the evolution of time,and eventually stabilized in the B-DNA structure.To explore the stability function of the bivalent metal ions on the A-DNA structure,a series of molecular dynamics simulations have been performed on the A-DNA of sequence(CCCGGCCGGG).The results show that bivalent metal ions(Mg^(2+),Zn^(2+),Ca^(2+))generate a great effect on the structural stability of A-DNA in the environment of high concentration.As the interaction between metal ions and electronegative DNA chains,the stability of A-DNA in solution is gradually improved with the increasing solution concentration of ions.In metal salt solution with high concentration,metal ions can be easily distributed in the solvation shells around the phosphate groups and further lead to the formation of shorter and more compact DNA structure.Also,under the condition of the same concentration and valency of the metal ions,the stability of A-DNA structure is different.The calculations indicate that the structure of A-DNA in CaCl_(2)solution is less stable than in MgCl_(2)and ZnCl_(2)solution.展开更多
基金supported by the National Natural Science Foundation of China (grant No.52072322)the Department of Science and Technology of Sichuan Province (CN) (grant no.23GJHZ0147,23ZDYF0262,2022YFG0294)Research and Innovation Fund for Graduate Students of Southwest Petroleum University (No.:2022KYCX111)。
文摘Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52072322, 51604250)the Sichuan Science and Technology Program, China (Grant Nos. 2022YFG0294, 2019-GH02-00052-HZ)the Undergraduate Innovation and Entrepreneurship Program (S202210615189)。
文摘An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipole layer at the internal Helmholtz electrical double layers(HEDLs) under the preferential adsorption function of formate on Zn surface,reducing the occurrence of side reactions at phase interface.Meanwhile,free formate in HEDLs regulates the Zn^(2+) solvation sheath structure to accelerate the desolvation,transference,and deposition kinetics of Zn^(2+).Besides,the hydrolysis reaction of zinc formate increases the hydrogen evolution overpotential,inhibiting the thermodynamic tendency of hydrogen evolution.Consequently,it presents stable cycle for more than 2400 h at 5 mA cm^(-2),as well as an average Coulombic efficiency of 99.8% at 1 A g^(-1) after 800 cycles in the Zn‖VO_(2) full cell.The interphase engineering strategy zinc anode by organic small molecular brings new possibility towards high-performance aqueous zinc-ion batteries.
基金supported by the National Natural Science Foundation of China(Grant No.11564015)the Foundation of Educational Committee of Jiangxi Province,China(Grant No.GJJ211112)the Fund for Distinguished Young Scholars of Jiangxi Science&Technology Normal University(Grant No.2015QN-BJRC002)。
文摘A-form DNA is one of the biologically active double helical structure.The study of A-DNA structure has an extensive application for developing the field of DNA packaging in biotechnology.In aqueous solution,the A-DNA structure will have a free transformation,the A-DNA structure will be translated into B-form structure with the evolution of time,and eventually stabilized in the B-DNA structure.To explore the stability function of the bivalent metal ions on the A-DNA structure,a series of molecular dynamics simulations have been performed on the A-DNA of sequence(CCCGGCCGGG).The results show that bivalent metal ions(Mg^(2+),Zn^(2+),Ca^(2+))generate a great effect on the structural stability of A-DNA in the environment of high concentration.As the interaction between metal ions and electronegative DNA chains,the stability of A-DNA in solution is gradually improved with the increasing solution concentration of ions.In metal salt solution with high concentration,metal ions can be easily distributed in the solvation shells around the phosphate groups and further lead to the formation of shorter and more compact DNA structure.Also,under the condition of the same concentration and valency of the metal ions,the stability of A-DNA structure is different.The calculations indicate that the structure of A-DNA in CaCl_(2)solution is less stable than in MgCl_(2)and ZnCl_(2)solution.