The transition to renewable energy sources has elevated the importance of SIBs(SIBs)as cost-effective alternatives to lithium-ion batteries(LIBs)for large-scale energy storage.This review examines the mechanisms of ga...The transition to renewable energy sources has elevated the importance of SIBs(SIBs)as cost-effective alternatives to lithium-ion batteries(LIBs)for large-scale energy storage.This review examines the mechanisms of gas generation in SIBs,identifying sources from cathode materials,anode materials,and electrolytes,which pose safety risks like swelling,leakage,and explosions.Gases such as CO_(2),H_(2),and O_(2) primarily arise from the instability of cathode materials,side reactions between electrode and electrolyte,and electrolyte decomposition under high temperatures or voltages.Enhanced mitigation strategies,encompassing electrolyte design,buffer layer construction,and electrode material optimization,are deliberated upon.Accordingly,subsequent research endeavors should prioritize long-term high-precision gas detection to bolster the safety and performance of SIBs,thereby fortifying their commercial viability and furnishing dependable solutions for large-scale energy storage and electric vehicles.展开更多
基金financial support of Shenzhen Science and Technology Program(No.KJZD20230923115005009)Xiangjiang Lab(22XJ01007)+3 种基金National Natural Science Foundation(NNSF)of China(No.52202269)Shenzhen Science and Technology program(No.20220810155330003)Shenzhen Science and Technology Program(NO.KJZD20230923115005009)Project of Department of Education of Guangdong Province(No.2022ZDZX3018).
文摘The transition to renewable energy sources has elevated the importance of SIBs(SIBs)as cost-effective alternatives to lithium-ion batteries(LIBs)for large-scale energy storage.This review examines the mechanisms of gas generation in SIBs,identifying sources from cathode materials,anode materials,and electrolytes,which pose safety risks like swelling,leakage,and explosions.Gases such as CO_(2),H_(2),and O_(2) primarily arise from the instability of cathode materials,side reactions between electrode and electrolyte,and electrolyte decomposition under high temperatures or voltages.Enhanced mitigation strategies,encompassing electrolyte design,buffer layer construction,and electrode material optimization,are deliberated upon.Accordingly,subsequent research endeavors should prioritize long-term high-precision gas detection to bolster the safety and performance of SIBs,thereby fortifying their commercial viability and furnishing dependable solutions for large-scale energy storage and electric vehicles.