期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Memristive Artificial Synapses for Neuromorphic Computing 被引量:8
1
作者 Wen Huang Xuwen Xia +6 位作者 Chen Zhu Parker Steichen Weidong Quan Weiwei Mao Jianping Yang liang Chu xing’ao li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期218-245,共28页
Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memri... Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memristive hardware neural networks in which synaptic devices that mimic biological synapses of the brain are the primary units.Mimicking synaptic functions with these devices is critical in neuromorphic systems.In the last decade,electrical and optical signals have been incorporated into the synaptic devices and promoted the simulation of various synaptic functions.In this review,these devices are discussed by categorizing them into electrically stimulated,optically stimulated,and photoelectric synergetic synaptic devices based on stimulation of electrical and optical signals.The working mechanisms of the devices are analyzed in detail.This is followed by a discussion of the progress in mimicking synaptic functions.In addition,existing application scenarios of various synaptic devices are outlined.Furthermore,the performances and future development of the synaptic devices that could be significant for building efficient neuromorphic systems are prospected. 展开更多
关键词 Synaptic devices Neuromorphic computing Electrical pulses Optical pulses Photoelectric synergetic effects
在线阅读 下载PDF
Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells 被引量:7
2
作者 Wei liu Nanjing liu +7 位作者 Shilei Ji Hongfeng Hua Yuhui Ma Ruiyuan Hu Jian Zhang liang Chu xing’ao li Wei Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期203-213,共11页
Organic cation and halide anion defects are omnipresent in the perovskite films,which will destroy perovskite electronic structure and downgrade the properties of devices.Defect passivation in halide perovskites is cr... Organic cation and halide anion defects are omnipresent in the perovskite films,which will destroy perovskite electronic structure and downgrade the properties of devices.Defect passivation in halide perovskites is crucial to the application of solar cells.Herein,tiny amounts of trivalent rhodium ion incorporation can help the nucleation of perovskite grain and passivate the defects in the grain boundaries,which can improve efficiency and stability of perovskite solar cells.Through first-principle calculations,rhodium ion incorporation into the perovskite structure can induce ordered arrangement and tune bandgap.In experiment,rhodium ion incorporation with perovskite can contribute to preparing larger crystalline and uniform film,reducing trap-state density and enlarging charge carrier lifetime.After optimizing the content of 1% rhodium,the devices achieved an efficiency up to 20.71% without obvious hysteresis,from 19.09% of that pristine perovskite.In addition,the unencapsulated solar cells maintain 92% of its initial efficiency after 500 h in dry air.This work highlights the advantages of trivalent rhodium ion incorporation in the characteristics of perovskite solar cells,which will promote the future industrial application. 展开更多
关键词 Perovskite solar cells Grain boundary passivation Rhodium incorporation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部