In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm bas...In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect.展开更多
Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitat...Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.展开更多
基金supported in part by the National Natural Science Foundation of China under grant No. 61271259, No. 61301123, No. 61471076Scientific and Technological Research Program of Chongqing Municipal Education Commission of Chongqing of China under Grant No.KJ130536
文摘In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect.
基金supported by the External Cooperation Program of Science and Technology of Fujian Province,China(2024I0016)the Fundamental Research Funds for the Central Universities(ZQN-1005).
文摘Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.