The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered...The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered significant attention as a promising positive electrode material for lithium-ion batteries due to its advantages of low cost,high safety,long cycle life,high voltage,good high-temperature performance,and high energy density.Although LiMn_(x)Fe_(1-x)PO_(4)has made significant breakthroughs in the past few decades,there are still facing great challenges in poor electronic conductivity and Li-ion diffusion,manganese dissolution affecting battery cycling performance,as well as low tap density.This review systematically summarizes the reaction mechanisms,various synthesis methods,and electrochemical properties of LiMn_(x)Fe_(1-x)PO_(4)to analyze reaction processes accurately and guide material preparation.Later,the main challenges currently faced are concluded,and the corresponding various modification strategies are discussed to enhance the reaction kinetics and electrochemical performance of LiMn_(x)Fe_(1-x)PO_(4),including multi-scale particle regulation,heteroatom doping,surface coating,as well as microscopic morphology design.Finally,in view of the current research challenges faced by intrinsic reaction processes,kinetics,and energy storage applications,the promising research directions are anticipated.More importantly,it is expected to provide key insights into the development of high-performance and stable LiMn_(x)Fe_(1-x)PO_(4)materials,to achieve practical energy storage requirements.展开更多
The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, S...The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, SBA for Space-Air-Ground Integrated Network(SAGIN) is investigated to enable the 5G integration deployment. This paper proposes a novel Holistic Service-based Architecture(H-SBA)for SAGIN of 5G-Advanced and beyond, i.e., 6G. The H-SBA introduces the concept of end-to-end servicebased architecture design. The "Network Function Service", introduced in 5G SBA, is extended from Control Plane to User Plane, from core network to access network. Based on H-SBA, the new generation of protocol design is proposed, which proposes to use IETF QUIC and SRv6 to substitute 5G HTTP/2.0 and GTP-U. Testing results show that new protocols can achieve low latency and high throughput, making them promising candidate for H-SBA.展开更多
The electrode material is regarded as one of the key factors that determine the performance of lithium-ion batteries(LIBs).However,it is still a challenge to search for an anode material with large capacity,low diffus...The electrode material is regarded as one of the key factors that determine the performance of lithium-ion batteries(LIBs).However,it is still a challenge to search for an anode material with large capacity,low diffusion barrier,and good stability.In the present work,two new CrP_(2) monolayers(Pmmn-CrP_(2) and Pmma-CrP_(2)) are predicted by means of first principles swarm structure search.Our study shows that both the two CrP_(2) monolayers have high dynamical and thermal stability,as well as excellent electron conductivity.Additionally,Pmmn-CrP_(2) exhibits a remarkably high storage capacity of 705 mA·h·g^(-1) for Li,meanwhile the diffusion energy barrier of Li on the surface of this monolayer is 0.21 eV,ensuring it as a high-performance anode material for LIBs.We hope that our study will inspire researchers to search for new-type two-dimensional(2D) transition metal phosphides for the electrode materials of LIB s.展开更多
基金National Natural Science Foundation of China(52104294)Fundamental Research Funds for the Central Universities(FRF-TP-19-079A1)。
文摘The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered significant attention as a promising positive electrode material for lithium-ion batteries due to its advantages of low cost,high safety,long cycle life,high voltage,good high-temperature performance,and high energy density.Although LiMn_(x)Fe_(1-x)PO_(4)has made significant breakthroughs in the past few decades,there are still facing great challenges in poor electronic conductivity and Li-ion diffusion,manganese dissolution affecting battery cycling performance,as well as low tap density.This review systematically summarizes the reaction mechanisms,various synthesis methods,and electrochemical properties of LiMn_(x)Fe_(1-x)PO_(4)to analyze reaction processes accurately and guide material preparation.Later,the main challenges currently faced are concluded,and the corresponding various modification strategies are discussed to enhance the reaction kinetics and electrochemical performance of LiMn_(x)Fe_(1-x)PO_(4),including multi-scale particle regulation,heteroatom doping,surface coating,as well as microscopic morphology design.Finally,in view of the current research challenges faced by intrinsic reaction processes,kinetics,and energy storage applications,the promising research directions are anticipated.More importantly,it is expected to provide key insights into the development of high-performance and stable LiMn_(x)Fe_(1-x)PO_(4)materials,to achieve practical energy storage requirements.
基金funded by Tsinghua University-China Mobile Communications Group Co., Ltd. Joint Institute。
文摘The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, SBA for Space-Air-Ground Integrated Network(SAGIN) is investigated to enable the 5G integration deployment. This paper proposes a novel Holistic Service-based Architecture(H-SBA)for SAGIN of 5G-Advanced and beyond, i.e., 6G. The H-SBA introduces the concept of end-to-end servicebased architecture design. The "Network Function Service", introduced in 5G SBA, is extended from Control Plane to User Plane, from core network to access network. Based on H-SBA, the new generation of protocol design is proposed, which proposes to use IETF QUIC and SRv6 to substitute 5G HTTP/2.0 and GTP-U. Testing results show that new protocols can achieve low latency and high throughput, making them promising candidate for H-SBA.
基金Project supported by the National Natural Science Foundation of China(Grant No.11964006)the Science and Technology Foundation of Kaili University(Grant No.2022ZD06)the Specialized Research Fund for the Doctoral Program of Kaili University(Grant Nos.BS201601 and BS201702)。
文摘The electrode material is regarded as one of the key factors that determine the performance of lithium-ion batteries(LIBs).However,it is still a challenge to search for an anode material with large capacity,low diffusion barrier,and good stability.In the present work,two new CrP_(2) monolayers(Pmmn-CrP_(2) and Pmma-CrP_(2)) are predicted by means of first principles swarm structure search.Our study shows that both the two CrP_(2) monolayers have high dynamical and thermal stability,as well as excellent electron conductivity.Additionally,Pmmn-CrP_(2) exhibits a remarkably high storage capacity of 705 mA·h·g^(-1) for Li,meanwhile the diffusion energy barrier of Li on the surface of this monolayer is 0.21 eV,ensuring it as a high-performance anode material for LIBs.We hope that our study will inspire researchers to search for new-type two-dimensional(2D) transition metal phosphides for the electrode materials of LIB s.