期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Experimental and numerical study on dynamic mechanical behaviors of shale under true triaxial compression at high strain rate
1
作者 xiaoping zhou Linyuan Han +1 位作者 Jing Bi Yundong Shou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期149-165,共17页
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ... High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data. 展开更多
关键词 Dynamic behaviors True triaxial compression High strain rates Dynamic failure mechanism PFC3D-FLAC3D coupled method
在线阅读 下载PDF
Microscopic cracking behaviors of rocks under uniaxial compression with microscopic multiphase heterogeneity by deep learning 被引量:5
2
作者 Zhi Zhao Yundong Shou xiaoping zhou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期411-422,共12页
Cracking behaviors of rocks significantly affect the safety and stability of the explorations of underground space and deep resources.To understand deeply the microscopic cracking process and mechanical property of ro... Cracking behaviors of rocks significantly affect the safety and stability of the explorations of underground space and deep resources.To understand deeply the microscopic cracking process and mechanical property of rocks,X-ray micro-computed tomography(X-μCT)is applied to capture the rock microstructures.The digital color difference UNet(DCD-UNet)-based deep learning algorithm with 3D reconstruction is proposed to reconstruct the multiphase heterogeneity microstructure models of rocks.The microscopic cracking and mechanical properties are studied based on the proposed microstructure-based peridynamic model.Results show that the DCD-UNet algorithm is more effective to recognize and to represent the microscopic multiphase heterogeneity of rocks.As damage characteristic index of multiphase rocks increases,transgranular cracks in the same grain phase,transgranular and intergranular cracks of pore-grain phase,intergranular and secondary transgranular cracks and transgranular crack between different grains propagate.The ultimate microscopic failure modes of rocks are mainly controlled by the transgranular cracks-based T1-shear,T3-shear,T1-tension,T2-tension and T3-tension failures,and the intergranular cracks-based T1-tension,T1-shear and T3-shear failures under uniaxial compression. 展开更多
关键词 X-μCT imaging Deep learning Microscopic multiphase heterogeneity Uniaxial compression Transgranular-intergranular cracks
在线阅读 下载PDF
Experimental investigation of rigid confinement effects of radial strain on dynamic mechanical properties and failure modes of concrete 被引量:4
3
作者 Pengfei Liu xiaoping zhou Qihu Qian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期939-951,共13页
In this study,to confirm the effect of confining pressure on dynamic mechanical behavior and failure modes of concrete,a split Hopkinson pressure bar dynamic loading device was utilized to perform dynamic compressive ... In this study,to confirm the effect of confining pressure on dynamic mechanical behavior and failure modes of concrete,a split Hopkinson pressure bar dynamic loading device was utilized to perform dynamic compressive experiments under confined and unconfined conditions.The confining pressure was achieved by applying a lateral metal sleeve on the testing specimen which was loaded in the axial direction.The experimental results prove that dynamic peak axial stress,dynamic peak lateral stress,and peak axial strain of concrete are strongly sensitive to the strain rate under confined conditions.Moreover,the failure patterns are significantly affected by the stress-loading rate and confining pressure.Concrete shows stronger strain rate effects under an unconfined condition than that under a confined condition.More cracks are created in concrete subjected to uniaxial dynamic compression at a higher strain rate,which can be explained by a thermal-activated mechanism.By contrast,crack generation is prevented by confinement.Fitting formulas of the dynamic peak stress and dynamic peak axial strain are established by considering strain rate effects(50–250 s-1)as well as the dynamic confining increase factor(DIFc). 展开更多
关键词 Strain rate effect Multiaxial loading Dynamic peak axial stress Thermo-activated mechanism Dynamic increase factor
在线阅读 下载PDF
Synthesis of dimethyl ether from methane mediated by HBr 被引量:2
4
作者 Qin You Zhen Liu +1 位作者 Wensheng Li xiaoping zhou 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第3期306-311,共6页
Dimethyl ether (DME) was synthesized from methane through a two-step process, in which CH3Br was prepared from the oxidative bromination reaction of methane in the presence of HBr and oxygen over a Rh-SiO2 catalyst ... Dimethyl ether (DME) was synthesized from methane through a two-step process, in which CH3Br was prepared from the oxidative bromination reaction of methane in the presence of HBr and oxygen over a Rh-SiO2 catalyst and then, in the second step, CH3Br was hydrolyzed to DME over a silica supported metal chloride catalyst. 12 mol%ZnCl2/SiO2 catalyst was found to be the most active, but it deactivated because of Cl- losing. 展开更多
关键词 din]ethyl ether methane oxidative bromination methyl bromide CATALYST
在线阅读 下载PDF
In-Situ FT-IR Investigation Methane to Syngas over of Partial Oxidation of Rh/SiO2 Catalyst 被引量:1
5
作者 Tinghua Wu Dongmin Lin +4 位作者 Ying Wu xiaoping zhou Qiangu Yan Weizheng Weng Huilin Wan 《Journal of Natural Gas Chemistry》 CAS CSCD 2007年第3期316-321,共6页
Partial oxidation of methane to syngas (POM) over Rh/SiO2 catalyst was investigated using in-situ FT-IR. When methane interacted with 1.0wt%Rh/SiO2 catalyst, it was dissociated to adsorbed hydrogen and CHx species. ... Partial oxidation of methane to syngas (POM) over Rh/SiO2 catalyst was investigated using in-situ FT-IR. When methane interacted with 1.0wt%Rh/SiO2 catalyst, it was dissociated to adsorbed hydrogen and CHx species. The adsorbed hydrogen atoms were transferred to SiO2 surface by "spill-over" and reacted with lattice oxygen to form surface -OH species. POM mechanism was investigated over Rh/SiO2 catalyst using in-situ FT-IR. It was found that CO2 was formed before CO could be detected when CH4 and O2 were introduced over the preoxidized Rh/SiO2 catalyst, whereas CO was detected before CO2 was formed over the prereduced Rh/SiO2 catalyst. 展开更多
关键词 partial oxidation SYNGAS Rh/SiO2 catalyst in-situ FT-IR
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部