The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/Si...The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.展开更多
SiC aerogel presents several advantageous features like lightweight and high temperature resistance when applied as microwave absorbing material.In this paper,SiC aerogel was prepared eventually followed by the sol-ge...SiC aerogel presents several advantageous features like lightweight and high temperature resistance when applied as microwave absorbing material.In this paper,SiC aerogel was prepared eventually followed by the sol-gel and carbonization reduction process.The results showed that the effective electromagnetic microwave absorption capacity of SiC aerogel was highly increased after being pyrolyzed at 1500℃,which presented a minimum reflection loss value of-57.80 dB at 3.10 mm and 9.86 GHz.Besides,the electromagnetic parameters of SiC aerogel with different paraffin ratios were discussed as well as the varying electromagnetic microwave absorption performances.The minimum reflection loss value first rose then fell as the SiC/paraffin ratio increased,which demonstrated the importance of SiC content.This study establishes the theoretical foundation for the subsequent functional application of SiC aerogel.展开更多
In the present study,the unique three-dimensional graphene coated nickel(Ni/C)foam reinforced silicon carbide(Ni/C@SiC)composites were first obtained via the precursor impregnation and pyrolysis(PIP)processes.The micr...In the present study,the unique three-dimensional graphene coated nickel(Ni/C)foam reinforced silicon carbide(Ni/C@SiC)composites were first obtained via the precursor impregnation and pyrolysis(PIP)processes.The microstructure images indicated that the SiC fillers were successfully prepared in the skeleton pores of the Ni/C foam.The influence of the PIP cycles on the microwave absorption performances was researched,and the results indicated that after the primary PIP process,Ni/C@SiC-I possessed the optimal microwave absorbing performance with a minimum reflection loss(RL)of-25.87 d B at 5.28 GHz and 5.00 mm.Besides,the RL values could be below-10.00 dB from 5.88 GHz to 7.74 GHz when the corresponding matching thickness was 3.85 mm.However,the microwave absorption properties of Ni/C@SiC-II and Ni/C@SiC-Ⅲwere tremendously degraded as the PIP times increased.At last,the electromagnetic parameter,dielectric loss,attenuation constant as well as impedance matching coefficient were further investigated to analyze the absorbing mechanism,which opened a new path for the certain scientific evaluation of the absorbing materials and had extremely important to the defence technology.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.D5000210522 and D5000210517)China Postdoctoral Science Foundation(Grant No.2021M702665)+2 种基金Natural Science Foundation of Shaanxi Province(Grant Nos.2022JQ-482 and 2023-JC-QN-0380)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515111155,2022A1515111200 and 2022A1515011191)Basic Research Programs of Taicang(Grant Nos.TC2021JC01,TC2021JC21,and TC2022JC08)。
文摘The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.
基金supported by various grants including the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515111155 and 2022A1515111200)Basic Research Programs of Taicang(Grant Nos.TC2023JC03 and TC2022JC08)+2 种基金Natural Science Foundation of Shaanxi Province(Grant No.2023JC-QN-0380)Nantong Natural Science Foundation(Grant No.JC2023011)Shanghai Central Guidance Fund for Local Science and Technology Development(Grant No.YDZX20233100004009)。
文摘SiC aerogel presents several advantageous features like lightweight and high temperature resistance when applied as microwave absorbing material.In this paper,SiC aerogel was prepared eventually followed by the sol-gel and carbonization reduction process.The results showed that the effective electromagnetic microwave absorption capacity of SiC aerogel was highly increased after being pyrolyzed at 1500℃,which presented a minimum reflection loss value of-57.80 dB at 3.10 mm and 9.86 GHz.Besides,the electromagnetic parameters of SiC aerogel with different paraffin ratios were discussed as well as the varying electromagnetic microwave absorption performances.The minimum reflection loss value first rose then fell as the SiC/paraffin ratio increased,which demonstrated the importance of SiC content.This study establishes the theoretical foundation for the subsequent functional application of SiC aerogel.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. D5000210522 and D5000200408)Jiangsu Planned Projects for Postdoctoral Research Funds, National Natural Science Foundation of China [grant number 51772151]+2 种基金Natural Science Foundation of Shaanxi Province (Grant No. 2021JQ-117)Basic Research Programs of Taicang (Grant No.TC2020JC10)Natural Science Foundation of Shandong Province (Grant No. ZR2020QE180)
文摘In the present study,the unique three-dimensional graphene coated nickel(Ni/C)foam reinforced silicon carbide(Ni/C@SiC)composites were first obtained via the precursor impregnation and pyrolysis(PIP)processes.The microstructure images indicated that the SiC fillers were successfully prepared in the skeleton pores of the Ni/C foam.The influence of the PIP cycles on the microwave absorption performances was researched,and the results indicated that after the primary PIP process,Ni/C@SiC-I possessed the optimal microwave absorbing performance with a minimum reflection loss(RL)of-25.87 d B at 5.28 GHz and 5.00 mm.Besides,the RL values could be below-10.00 dB from 5.88 GHz to 7.74 GHz when the corresponding matching thickness was 3.85 mm.However,the microwave absorption properties of Ni/C@SiC-II and Ni/C@SiC-Ⅲwere tremendously degraded as the PIP times increased.At last,the electromagnetic parameter,dielectric loss,attenuation constant as well as impedance matching coefficient were further investigated to analyze the absorbing mechanism,which opened a new path for the certain scientific evaluation of the absorbing materials and had extremely important to the defence technology.