The high-frequency(HF) communication is one of essential communication methods for military and emergency application. However, the selection of communication frequency channel is always a difficult problem as the cro...The high-frequency(HF) communication is one of essential communication methods for military and emergency application. However, the selection of communication frequency channel is always a difficult problem as the crowded spectrum, the time-varying channels, and the malicious intelligent jamming. The existing frequency hopping, automatic link establishment and some new anti-jamming technologies can not completely solve the above problems. In this article, we adopt deep reinforcement learning to solve this intractable challenge. First, the combination of the spectrum state and the channel gain state is defined as the complex environmental state, and the Markov characteristic of defined state is analyzed and proved. Then, considering that the spectrum state and channel gain state are heterogeneous information, a new deep Q network(DQN) framework is designed, which contains multiple sub-networks to process different kinds of information. Finally, aiming to improve the learning speed and efficiency, the optimization targets of corresponding sub-networks are reasonably designed, and a heterogeneous information fusion deep reinforcement learning(HIF-DRL) algorithm is designed for the specific frequency selection. Simulation results show that the proposed algorithm performs well in channel prediction, jamming avoidance and frequency channel selection.展开更多
We optimized the extraction process of Lysurus mokusin(L.)Fr.insecticidal compound(LMIC)using response surface methodology with ultrasonic extraction(UE).The surface morphologies of maceration extract(ME)and UE residu...We optimized the extraction process of Lysurus mokusin(L.)Fr.insecticidal compound(LMIC)using response surface methodology with ultrasonic extraction(UE).The surface morphologies of maceration extract(ME)and UE residues were compared by scanning electron microscopy,and then the activity of LMIC on Lymantria dispar(Asian gypsy moths)larvae was determined.Results showed that the optimal condition of UE was followed by 80 min of extraction time,60%of ethanol concentration and 80 mL g^-1 of liquid–solid ratio.The surface morphologies of UE residue were looser and rougher than ME residue.The corrected mortalities of LMIC on L.dispar larvae was 59.77%.This result indicated that L.mokusin was a good candidate as pesticide for pest management.展开更多
This paper mainly investigates the coordinated anti-jamming channel access problems in multiuser scenarios where there exists a tracking jammer who senses the spectrum and traces the channel with maximal receiving pow...This paper mainly investigates the coordinated anti-jamming channel access problems in multiuser scenarios where there exists a tracking jammer who senses the spectrum and traces the channel with maximal receiving power.To cope with the challenges brought by the tracking jammer,a multi-leader onefollower anti-jamming Stackelberg(MOAS)game is formulated,which is able to model the complex interactions between users and the tracking jammer.In the proposed game,users act as leaders,chose their channel access strategies and transmit firstly.The tracking jammer acts as the follower,whose objective is to find the optimal jamming strategy at each time slot.Besides,the existence of Stackelberg equilibriums(SEs)is proved,which means users reach Nash Equilibriums(NEs)for each jamming strategy while the jammer finds its best response jamming strategy for the current network access case.An active attraction based anti-jamming channel access(3ACA)algorithm is designed to reach SEs,where jammed users keep their channel access strategies unchanged to create access chances for other users.To enhance the fairness of the system,users will adjust their strategies and relearn after certain time slots to provide access chances for those users who sacrifice themselves to attract the tracking jammer.展开更多
In J-TEXT tokamak,fast electron bremsstrahlung diagnostic with 9 chords equipped with multichannel analyzer enables detailed studies of the generation and transport of fast electrons.The spatial profiles and energy sp...In J-TEXT tokamak,fast electron bremsstrahlung diagnostic with 9 chords equipped with multichannel analyzer enables detailed studies of the generation and transport of fast electrons.The spatial profiles and energy spectrum of the fast electrons have been measured in two ECCD cases with either on-axis or off-axis injection,and the profiles processed by Abel-inversion are consistent with the calculated power deposition locations.Moreover,it is observed that the energy of fast electrons increases rapidly after turning off the ECCD,which may be attributed to the acceleration by the recovered loop voltage at low electron density.展开更多
The avoidance of runaway electrons(REs) generated during plasma disruption is of great concern for the safe operation of tokamak devices.Experimental study on the suppression of runaway current by electrode biasing(EB...The avoidance of runaway electrons(REs) generated during plasma disruption is of great concern for the safe operation of tokamak devices.Experimental study on the suppression of runaway current by electrode biasing(EB) and limiter biasing(LB) has been performed on the J-TEXT tokamak,which could be an alternative way to suppress the runaway current.The experimental results show that the higher the voltage value,the smaller the runaway current in both EB and LB experiments.The runaway current can be completely suppressed at an electrode biased voltage of +450 V and a limiter biased voltage of +300 V.The comparison of the energy spectra during the runaway plateau phase shows that the maximum energy max(E_(RE)) and radiation temperature T_(HXR)hard x-rays(HXRs)are significantly reduced after the application of +200 V limiter biased voltage.The electric field generated by the biased voltage may be the key factor to suppress the runaway current,and the measured radial electric field increases obviously after the voltage is applied.This may result in an increase in the loss of REs to realize the suppression of runaway current.展开更多
Electron cyclotron current drive(ECCD) efficiency research is of great importance for the neoclassical tearing mode(NTM) stabilization.Improving ECCD efficiency is beneficial for the NTM stabilization and the ECCD pow...Electron cyclotron current drive(ECCD) efficiency research is of great importance for the neoclassical tearing mode(NTM) stabilization.Improving ECCD efficiency is beneficial for the NTM stabilization and the ECCD power threshold reduction.ECCD efficiency has been investigated on the J-TEXT tokamak.The electron cyclotron wave(ECW) power scan was performed to obtain the current drive efficiency.The current drive efficiency is derived to be approximately η_(0)=(0.06-0.16)×10^(19)A m^(-2)W^(-1)on the J-TEXT tokamak.The effect of the residual toroidal electric field has been included in the determination of the current drive efficiency,which will enhance the ECCD efficiency.At the plasma current of I_(p)=100 kA and electron density of n_(e)=1.5×10^(19)m^(-3),the ratio of Spitzer conductivity between omhic(OH)and ECCD phases is considered and the experimental data have been corrected.The correction results show that the current drive efficiency η_(1)caused by the fast electron hot conductivity decreases by approximately 79%.It can be estimated that the driven current is approximately 24 kA at 300 kW ECW power.展开更多
The spatially modulated electron distribution of plasma is the basis for obtaining programmable electron density patterns.It has an important influence on plasma technology applications.We propose an efficient scheme ...The spatially modulated electron distribution of plasma is the basis for obtaining programmable electron density patterns.It has an important influence on plasma technology applications.We propose an efficient scheme to realize controllable electron density patterns in underdense plasma based on the array laser-plasma interaction.Theoretical evidence for the realization of programmable electron density patterns and the corresponding electrostatic field is provided analytically,which is confirmed by particle-in-cell simulations.Results show that the spatial distribution of electron density in the propagation and transverse directions of the laser can be highly modulated to obtain rich programmable electron density patterns by adjusting the array pattern code and pulse width of the array laser beam.展开更多
基金supported by Guangxi key Laboratory Fund of Embedded Technology and Intelligent System under Grant No. 2018B-1the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province under Grant No. BK20160034+1 种基金the National Natural Science Foundation of China under Grant No. 61771488, No. 61671473 and No. 61631020in part by the Open Research Foundation of Science and Technology on Communication Networks Laboratory
文摘The high-frequency(HF) communication is one of essential communication methods for military and emergency application. However, the selection of communication frequency channel is always a difficult problem as the crowded spectrum, the time-varying channels, and the malicious intelligent jamming. The existing frequency hopping, automatic link establishment and some new anti-jamming technologies can not completely solve the above problems. In this article, we adopt deep reinforcement learning to solve this intractable challenge. First, the combination of the spectrum state and the channel gain state is defined as the complex environmental state, and the Markov characteristic of defined state is analyzed and proved. Then, considering that the spectrum state and channel gain state are heterogeneous information, a new deep Q network(DQN) framework is designed, which contains multiple sub-networks to process different kinds of information. Finally, aiming to improve the learning speed and efficiency, the optimization targets of corresponding sub-networks are reasonably designed, and a heterogeneous information fusion deep reinforcement learning(HIF-DRL) algorithm is designed for the specific frequency selection. Simulation results show that the proposed algorithm performs well in channel prediction, jamming avoidance and frequency channel selection.
基金The work was supported by the Central University Fundamental Research Funds Special Fund Project[2572016AA03,25720171118]Harbin Applied Technology Research and Development Project[2016RAXXJ035]the Central Financial Forest Science and Technology Promotion Demonstration Fund Project[JLT[2016]13].
文摘We optimized the extraction process of Lysurus mokusin(L.)Fr.insecticidal compound(LMIC)using response surface methodology with ultrasonic extraction(UE).The surface morphologies of maceration extract(ME)and UE residues were compared by scanning electron microscopy,and then the activity of LMIC on Lymantria dispar(Asian gypsy moths)larvae was determined.Results showed that the optimal condition of UE was followed by 80 min of extraction time,60%of ethanol concentration and 80 mL g^-1 of liquid–solid ratio.The surface morphologies of UE residue were looser and rougher than ME residue.The corrected mortalities of LMIC on L.dispar larvae was 59.77%.This result indicated that L.mokusin was a good candidate as pesticide for pest management.
文摘This paper mainly investigates the coordinated anti-jamming channel access problems in multiuser scenarios where there exists a tracking jammer who senses the spectrum and traces the channel with maximal receiving power.To cope with the challenges brought by the tracking jammer,a multi-leader onefollower anti-jamming Stackelberg(MOAS)game is formulated,which is able to model the complex interactions between users and the tracking jammer.In the proposed game,users act as leaders,chose their channel access strategies and transmit firstly.The tracking jammer acts as the follower,whose objective is to find the optimal jamming strategy at each time slot.Besides,the existence of Stackelberg equilibriums(SEs)is proved,which means users reach Nash Equilibriums(NEs)for each jamming strategy while the jammer finds its best response jamming strategy for the current network access case.An active attraction based anti-jamming channel access(3ACA)algorithm is designed to reach SEs,where jammed users keep their channel access strategies unchanged to create access chances for other users.To enhance the fairness of the system,users will adjust their strategies and relearn after certain time slots to provide access chances for those users who sacrifice themselves to attract the tracking jammer.
基金the National Key R&D Program of China(Nos.2017YFE0302000,2018YFE0309103,2019YFE030-10004,2017YFE0300501,2018YFE0310300,2018YFE0309100)National Natural Science Foundation of China(Nos.11775089,51821005,11905077 and 11575068)the China Postdoctoral Science Foundation(No.2019M652615)。
文摘In J-TEXT tokamak,fast electron bremsstrahlung diagnostic with 9 chords equipped with multichannel analyzer enables detailed studies of the generation and transport of fast electrons.The spatial profiles and energy spectrum of the fast electrons have been measured in two ECCD cases with either on-axis or off-axis injection,and the profiles processed by Abel-inversion are consistent with the calculated power deposition locations.Moreover,it is observed that the energy of fast electrons increases rapidly after turning off the ECCD,which may be attributed to the acceleration by the recovered loop voltage at low electron density.
基金supported by National MCF Energy R&D Program of China(No.2019YFE03010004)National Key R&D Program of China(No.2018YFE0309100)+1 种基金National Natural Science Foundation of China(Nos.11775089 and 51821005)National Magnetic Confinement Fusion Science Program of China(Nos.2015GB111002 and 2015GB104000)
文摘The avoidance of runaway electrons(REs) generated during plasma disruption is of great concern for the safe operation of tokamak devices.Experimental study on the suppression of runaway current by electrode biasing(EB) and limiter biasing(LB) has been performed on the J-TEXT tokamak,which could be an alternative way to suppress the runaway current.The experimental results show that the higher the voltage value,the smaller the runaway current in both EB and LB experiments.The runaway current can be completely suppressed at an electrode biased voltage of +450 V and a limiter biased voltage of +300 V.The comparison of the energy spectra during the runaway plateau phase shows that the maximum energy max(E_(RE)) and radiation temperature T_(HXR)hard x-rays(HXRs)are significantly reduced after the application of +200 V limiter biased voltage.The electric field generated by the biased voltage may be the key factor to suppress the runaway current,and the measured radial electric field increases obviously after the voltage is applied.This may result in an increase in the loss of REs to realize the suppression of runaway current.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(No.2019YFE03010004)the National Key R&D Program ofChina(No.2018YFE0309100)National Natural Science Foundation of China(Nos.11775089,11905077,51821005)
文摘Electron cyclotron current drive(ECCD) efficiency research is of great importance for the neoclassical tearing mode(NTM) stabilization.Improving ECCD efficiency is beneficial for the NTM stabilization and the ECCD power threshold reduction.ECCD efficiency has been investigated on the J-TEXT tokamak.The electron cyclotron wave(ECW) power scan was performed to obtain the current drive efficiency.The current drive efficiency is derived to be approximately η_(0)=(0.06-0.16)×10^(19)A m^(-2)W^(-1)on the J-TEXT tokamak.The effect of the residual toroidal electric field has been included in the determination of the current drive efficiency,which will enhance the ECCD efficiency.At the plasma current of I_(p)=100 kA and electron density of n_(e)=1.5×10^(19)m^(-3),the ratio of Spitzer conductivity between omhic(OH)and ECCD phases is considered and the experimental data have been corrected.The correction results show that the current drive efficiency η_(1)caused by the fast electron hot conductivity decreases by approximately 79%.It can be estimated that the driven current is approximately 24 kA at 300 kW ECW power.
基金supported by National Natural Science Foundation of China(Nos.11865014,11765017,11764039,11475027,11274255,and 11305132)the Natural Science Foundation of Gansu Province(No.17JR5RA076)by the Scientific Research Project of Gansu Higher Education(No.2016A-005)。
文摘The spatially modulated electron distribution of plasma is the basis for obtaining programmable electron density patterns.It has an important influence on plasma technology applications.We propose an efficient scheme to realize controllable electron density patterns in underdense plasma based on the array laser-plasma interaction.Theoretical evidence for the realization of programmable electron density patterns and the corresponding electrostatic field is provided analytically,which is confirmed by particle-in-cell simulations.Results show that the spatial distribution of electron density in the propagation and transverse directions of the laser can be highly modulated to obtain rich programmable electron density patterns by adjusting the array pattern code and pulse width of the array laser beam.