期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM
1
作者 Wanbo Qu Zhihao Zhao +6 位作者 Yuxuan Yang Yang Zhang Shengwu Guo Fei Li xiangdong ding Jun Sun Haijun Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期12-25,共14页
The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous a... The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous advancement in computational technology,specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process.Utilizing advanced image processing algorithms promotes the rectification of image distortions,concurrently elevating the overall image quality to superior standards.Extracting high-resolution,pixel-level discrete information and converting it into atomic-scale,followed by performing statistical calculations on the physical matters of interest through quantitative analysis,represent an effective strategy to maximize the value of electron microscope images.The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers.This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives:contrast,lattice and strain,as well as atomic displacements and polarization.It further elaborates on practical applications of these methods in electronic functional materials,notably in piezoelectrics/ferroelectrics and thermoelectrics.It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research,elucidating the structure–property correlations in high-performance systems,and guiding synthesis strategies. 展开更多
关键词 AC-STEM quantitative analysis POLARIZATION electronic functional materials
在线阅读 下载PDF
Prediction of lattice thermal conductivity with two-stage interpretable machine learning
2
作者 胡锦龙 左钰婷 +10 位作者 郝昱州 舒国钰 王洋 冯敏轩 李雪洁 王晓莹 孙军 丁向东 高志斌 朱桂妹 李保文 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期11-18,共8页
Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice thermal conductivity calculations and the limited applicability of classical physical models have le... Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice thermal conductivity calculations and the limited applicability of classical physical models have led to the inefficient development of thermoelectric materials. In this study, we proposed a two-stage machine learning framework with physical interpretability incorporating domain knowledge to calculate high/low thermal conductivity rapidly. Specifically, crystal graph convolutional neural network(CGCNN) is constructed to predict the fundamental physical parameters related to lattice thermal conductivity. Based on the above physical parameters, an interpretable machine learning model–sure independence screening and sparsifying operator(SISSO), is trained to predict the lattice thermal conductivity. We have predicted the lattice thermal conductivity of all available materials in the open quantum materials database(OQMD)(https://www.oqmd.org/). The proposed approach guides the next step of searching for materials with ultra-high or ultralow lattice thermal conductivity and promotes the development of new thermal insulation materials and thermoelectric materials. 展开更多
关键词 low lattice thermal conductivity interpretable machine learning thermoelectric materials physical domain knowledge
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部