The High Altitude Detection of Astronomical Radiation(HADAR)experiment,which was constructed in Tibet,China,combines the wide-angle advantages of traditional EAS array detectors with the high-sensitivity advantages of...The High Altitude Detection of Astronomical Radiation(HADAR)experiment,which was constructed in Tibet,China,combines the wide-angle advantages of traditional EAS array detectors with the high-sensitivity advantages of focused Cherenkov detectors.Its objective is to observe transient sources such as gamma-ray bursts and the counterparts of gravitational waves.This study aims to utilize the latest AI technology to enhance the sensitivity of HADAR experiments.Training datasets and models with distinctive creativity were constructed by incorporating the relevant physical theories for various applications.These models can determine the type,energy,and direction of the incident particles after careful design.We obtained a background identification accuracy of 98.6%,a relative energy reconstruction error of 10.0%,and an angular resolution of 0.22°in a test dataset at 10 TeV.These findings demonstrate the significant potential for enhancing the precision and dependability of detector data analysis in astrophysical research.By using deep learning techniques,the HADAR experiment’s observational sensitivity to the Crab Nebula has surpassed that of MAGIC and H.E.S.S.at energies below 0.5 TeV and remains competitive with conventional narrow-field Cherenkov telescopes at higher energies.In addition,our experiment offers a new approach for dealing with strongly connected,scattered data.展开更多
As a proposed detector,the giant radio array for neutrino detection(GRAND)is primarily designed to discover and study the origin of ultra-high-energy cosmic rays,with ultra-high-energy neutrinos presenting the main me...As a proposed detector,the giant radio array for neutrino detection(GRAND)is primarily designed to discover and study the origin of ultra-high-energy cosmic rays,with ultra-high-energy neutrinos presenting the main method for detecting ultra-high-energy cosmic rays and their sources.The main principle is to detect radio emissions generated by ultra-high-energy neutrinos interacting with the atmosphere as they travel.GRAND is the largest neutrino detection array to be built in China.GRANDProto35,as the first stage of the GRAND experiment,is a coincidence array composed of radio antennas and a scintillation detector,the latter of which,as a traditional detector,is used to perform cross-validation with radio detection,thus verifying the radio detection efficiency and enabling study of the background exclusion method.This study focused on the implementation of the optimization simulation and experimental testing of the performance of the prototype scintillation detector used in GRANDProto35.A package based on GEANT4 was used to simulate the details of the scintillation detector,including the optical properties of its materials,the height of the light guide box,and position inhomogeneity.The surface of the scintillator and the reflective materials used in the detector was optimized,and the influence of light guide heights and position inhomogeneity on the energy and time resolutions of the detector was studied.According to the simulation study,the number of scintillator photoelectrons increased when changing from the polished surface to the ground surface,with the appropriate design height for the light guide box being 50 cm and the appropriate design area for the scintillator being 0.5 m^(2).The performance of the detector was tested in detail through a coincidence experiment,and the test results showed that the number of photoelectrons collected in the detector was$84 with a time resolution of~1 ns,indicating good performance.The simulation results were consistent with those obtained from the tests,which also verified the reliability of the simulation software.These studies provided a full understanding of the performance of the scintillation detector and guidance for the subsequent operation and analysis of the GRANDProto35 experimental array.展开更多
The high-altitude detection of astronomical radiation(HADAR)experiment is a new Cherenkov observation technique with a wide field of view(FoV),aimed at observing the prompt emissions ofγ-ray bursts(GRBs).The bottlene...The high-altitude detection of astronomical radiation(HADAR)experiment is a new Cherenkov observation technique with a wide field of view(FoV),aimed at observing the prompt emissions ofγ-ray bursts(GRBs).The bottleneck for this type of experiment can be found in determining how to reject the high rate of nightsky background(NSB)noise from random stars.In this work,we propose a novel method for rejecting noise,which considers the spatial properties of GRBs and the temporal characteristics of Cherenkov radiation.In space coordinates,the map between the celestial sphere and the fired photomultiplier tubes(PMTs)on the telescope's camera can be expressed as f(δ(i,j))=δ'(i',j'),which means that a limited number of PMTs is selected from one direction.On the temporal scale,a 20-ns time window was selected based on the knowledge of Cherenkov radiation.This allowed integration of the NSB for a short time interval.Consequently,the angular resolution and effective area at 100 GeV in the HADAR experiment were obtained as 0.2°and 10^(4)m^(2),respectively.This method can be applied to all wide-FoV experiments.展开更多
Neutrino detection in the 100 PeV energy region is the ultimate means of studying the origin of ultra-highenergy cosmic rays,in which the large radio detection array giant radio array for neutrino detection(GRAND)proj...Neutrino detection in the 100 PeV energy region is the ultimate means of studying the origin of ultra-highenergy cosmic rays,in which the large radio detection array giant radio array for neutrino detection(GRAND)project aims to use to decipher this century-old problem.The GRANDProto35 compact array is a microform of 35 radio prototype detectors for the GRAND experiment,which verifies the reliability of GRAND performance through operation,and data analysis of the prototype detectors.As radio detectors are a novel development in recent years,and their indexes need to be verified by traditional detectors,the GRAND Cooperation Group designed and constructed the GRANDProto35 coincidence array composed of radio detectors and scintillation detectors.This study simulated the changes in detection efficiency,effective area,and event rate of cosmic rays with zenith angle based on this coincidence array.The study found that the 1017 eV energy region is sensitive to GRANDProto35 detection.When the energy exceeded 1017 eV,the array detection efficiency could reach more than 95%and the effective area was up to*29106 m2.A simulation study on cosmic ray events with large zenith angles showed that the event rate detected by the array decreased significantly with increasing zenith angle,and the event rate of cosmic rays was approximately 0.1 per day for a zenith angle of 75.This serves as the background pollution rate for neutrino observation caused by largeangle cosmic-ray events,providing an important reference for further experiments.The study results will be verified after the joint operation of the coincidence array.展开更多
文摘The High Altitude Detection of Astronomical Radiation(HADAR)experiment,which was constructed in Tibet,China,combines the wide-angle advantages of traditional EAS array detectors with the high-sensitivity advantages of focused Cherenkov detectors.Its objective is to observe transient sources such as gamma-ray bursts and the counterparts of gravitational waves.This study aims to utilize the latest AI technology to enhance the sensitivity of HADAR experiments.Training datasets and models with distinctive creativity were constructed by incorporating the relevant physical theories for various applications.These models can determine the type,energy,and direction of the incident particles after careful design.We obtained a background identification accuracy of 98.6%,a relative energy reconstruction error of 10.0%,and an angular resolution of 0.22°in a test dataset at 10 TeV.These findings demonstrate the significant potential for enhancing the precision and dependability of detector data analysis in astrophysical research.By using deep learning techniques,the HADAR experiment’s observational sensitivity to the Crab Nebula has surpassed that of MAGIC and H.E.S.S.at energies below 0.5 TeV and remains competitive with conventional narrow-field Cherenkov telescopes at higher energies.In addition,our experiment offers a new approach for dealing with strongly connected,scattered data.
基金supported by the National Natural Science Foundation of China(Nos.11705103,12005120).
文摘As a proposed detector,the giant radio array for neutrino detection(GRAND)is primarily designed to discover and study the origin of ultra-high-energy cosmic rays,with ultra-high-energy neutrinos presenting the main method for detecting ultra-high-energy cosmic rays and their sources.The main principle is to detect radio emissions generated by ultra-high-energy neutrinos interacting with the atmosphere as they travel.GRAND is the largest neutrino detection array to be built in China.GRANDProto35,as the first stage of the GRAND experiment,is a coincidence array composed of radio antennas and a scintillation detector,the latter of which,as a traditional detector,is used to perform cross-validation with radio detection,thus verifying the radio detection efficiency and enabling study of the background exclusion method.This study focused on the implementation of the optimization simulation and experimental testing of the performance of the prototype scintillation detector used in GRANDProto35.A package based on GEANT4 was used to simulate the details of the scintillation detector,including the optical properties of its materials,the height of the light guide box,and position inhomogeneity.The surface of the scintillator and the reflective materials used in the detector was optimized,and the influence of light guide heights and position inhomogeneity on the energy and time resolutions of the detector was studied.According to the simulation study,the number of scintillator photoelectrons increased when changing from the polished surface to the ground surface,with the appropriate design height for the light guide box being 50 cm and the appropriate design area for the scintillator being 0.5 m^(2).The performance of the detector was tested in detail through a coincidence experiment,and the test results showed that the number of photoelectrons collected in the detector was$84 with a time resolution of~1 ns,indicating good performance.The simulation results were consistent with those obtained from the tests,which also verified the reliability of the simulation software.These studies provided a full understanding of the performance of the scintillation detector and guidance for the subsequent operation and analysis of the GRANDProto35 experimental array.
基金supported by the Key R&D Program of Sichuan Province (Nos. 2019ZYZF0001 and 2020YFSY0016)the National Natural Science Foundation of China (Nos. 11873005,12047575, 11705103, 11635011, U1831208, U1632104, 11875264U2031110)
文摘The high-altitude detection of astronomical radiation(HADAR)experiment is a new Cherenkov observation technique with a wide field of view(FoV),aimed at observing the prompt emissions ofγ-ray bursts(GRBs).The bottleneck for this type of experiment can be found in determining how to reject the high rate of nightsky background(NSB)noise from random stars.In this work,we propose a novel method for rejecting noise,which considers the spatial properties of GRBs and the temporal characteristics of Cherenkov radiation.In space coordinates,the map between the celestial sphere and the fired photomultiplier tubes(PMTs)on the telescope's camera can be expressed as f(δ(i,j))=δ'(i',j'),which means that a limited number of PMTs is selected from one direction.On the temporal scale,a 20-ns time window was selected based on the knowledge of Cherenkov radiation.This allowed integration of the NSB for a short time interval.Consequently,the angular resolution and effective area at 100 GeV in the HADAR experiment were obtained as 0.2°and 10^(4)m^(2),respectively.This method can be applied to all wide-FoV experiments.
基金This work was supported by the National Natural Science Foundation of China(Nos.11705103 and 12005120).
文摘Neutrino detection in the 100 PeV energy region is the ultimate means of studying the origin of ultra-highenergy cosmic rays,in which the large radio detection array giant radio array for neutrino detection(GRAND)project aims to use to decipher this century-old problem.The GRANDProto35 compact array is a microform of 35 radio prototype detectors for the GRAND experiment,which verifies the reliability of GRAND performance through operation,and data analysis of the prototype detectors.As radio detectors are a novel development in recent years,and their indexes need to be verified by traditional detectors,the GRAND Cooperation Group designed and constructed the GRANDProto35 coincidence array composed of radio detectors and scintillation detectors.This study simulated the changes in detection efficiency,effective area,and event rate of cosmic rays with zenith angle based on this coincidence array.The study found that the 1017 eV energy region is sensitive to GRANDProto35 detection.When the energy exceeded 1017 eV,the array detection efficiency could reach more than 95%and the effective area was up to*29106 m2.A simulation study on cosmic ray events with large zenith angles showed that the event rate detected by the array decreased significantly with increasing zenith angle,and the event rate of cosmic rays was approximately 0.1 per day for a zenith angle of 75.This serves as the background pollution rate for neutrino observation caused by largeangle cosmic-ray events,providing an important reference for further experiments.The study results will be verified after the joint operation of the coincidence array.