2019新型冠状病毒(2019 novel coronavirus,2019-nCoV),因2019年12月发生在中国武汉的不明原因病毒性肺炎病例而被发现,并于2020年1月12日被世界卫生组织(World Health Organization,WHO)命名。在之后的1个月内,2019-nCoV在湖北省内、...2019新型冠状病毒(2019 novel coronavirus,2019-nCoV),因2019年12月发生在中国武汉的不明原因病毒性肺炎病例而被发现,并于2020年1月12日被世界卫生组织(World Health Organization,WHO)命名。在之后的1个月内,2019-nCoV在湖北省内、中国甚至其他国家传播,造成了数以千计病例的出现,同时也引起了民众一定程度的恐慌。本指南的制订希望能够从疾病流行病学、病因学、诊断、治疗、护理、医院感染控制等方面给临床医师、社区居民等提供医疗护理及居家照护的相关指导。展开更多
采用失重法和开路电位、恒流放电等电化学测试方法评价了模拟深海环境下Mg-Ga-Hg合金出厂态和间歇工作过程中的电化学性能。结果表明,在4℃、4 cm/s下,Mg-Ga-Hg合金的开路电位低于-1.95 V且自放电速率较慢;在1~9 m A/cm^2下放电时,稳定...采用失重法和开路电位、恒流放电等电化学测试方法评价了模拟深海环境下Mg-Ga-Hg合金出厂态和间歇工作过程中的电化学性能。结果表明,在4℃、4 cm/s下,Mg-Ga-Hg合金的开路电位低于-1.95 V且自放电速率较慢;在1~9 m A/cm^2下放电时,稳定工作电位低于-1.90 V,电流效率维持在50%以上。此外,出厂态和间歇工作时的Mg-Ga-Hg合金均可快速启动,适合用作海水电池的负极材料,以满足深海观测仪器长期供电需求。展开更多
Oleanolic acid(OA)is a pentacyclic triterpenoid chemical component that exists in natural plants with a molecular formula of C30H48O3 and a molecular weight at 456.71 g·mol-1.OA is widespread in traditional Chine...Oleanolic acid(OA)is a pentacyclic triterpenoid chemical component that exists in natural plants with a molecular formula of C30H48O3 and a molecular weight at 456.71 g·mol-1.OA is widespread in traditional Chinese herbal medicine(Ligustri Lucidi Fructus,Achyranthis Bidentate Radix,Red Sage)and berries(blueberries,grapes).In recent years,because of the extensive pharmacological effects of OA,its advantages in disease treatment have become increasingly prominent and gradually attracted the attention of pharmaceutical researchers.OA has effective therapeutic effects on a series of chronic diseases such as inflammation,cancer,diabetes,and cardiovascular diseases through multiple signaling pathways and various targets.Especially in cancers,such as colorectal cancer,liver cancer,gastric cancer,lung cancer,breast cancer and other malignancies,OA presents substantial efficacy.However,its poor aqueous solubility,needy bioavailability,and unsatisfactory pharmacological activity excessively restrict its clinical application.More importantly,the improper utilization of OA can cause adverse reactions,toxic effects and even damage to organs in some specific situations.With the discovery of various pharmacological effects,the complex action mechanisms of OA,the continuous progress in structural modification of OA,as well as the synthesis of OA derivatives,its application is expanding gradually.Among numerous studies,there is a clear indication that OA and its derivatives,if fully developed,may provide an alternative and cheaper treatment for a variety of chronic diseases.However,the specific molecular mechanisms of OA and its derivatives as an alternative therapy and supplementary therapy for cancer,diabetes,cardiovascular disease and other chronic diseases remain to be clarified.Therefore,it is necessary to further study the pharmacokinetics,pharmacological activity,specific targets and related mechanisms of OA to lay a solid foundation for drug development and the application of OA in clinical settings.展开更多
OBJECTIVE To identify the inhibitory effect of ursolic acid on the colorectal cancer HCT116 cells in vitro and in vivo,and to explore the underlying mechanism.METHODS The smoothened(SMO)gene-silenced human colorectal ...OBJECTIVE To identify the inhibitory effect of ursolic acid on the colorectal cancer HCT116 cells in vitro and in vivo,and to explore the underlying mechanism.METHODS The smoothened(SMO)gene-silenced human colorectal cancer HCT116^(hSMO)cell line was established by transfection with the lentivirus carrying SMO shRNA.The cytotoxic effect of ursolic acid on HCT116^(hSMO)cells was determined by MTT assay.The effect of ursolic acid on the migration of HCT116^(hSMO)cells was studied by wound healing assay.The effect of ursolic acid on apoptosis of HCT116^(hSMO)cells was explored by Hoechst33342/PI double staining and flow cytometry.The effects of ursolic acid on the expressions of apoptotic marker gene Bcl-2,Bax,caspase-3 and caspase-9 were measured by real-time quantitative RT-PCR(RT-qPCR)and Western blotting(WB)analysis.RT-qPCR and WB were used to examine the relationship between GLI1,c-Myc expression and PI3K/Akt pathway to further investigate the mechanism of GLI1 activation in HCT116^(hSMO)cells.The effects of ursolic acid on the expressions of GLI1,p-Akt,Akt,c-Myc,SHH and SUFU of noncanonical Hedgehog pathway were evaluated by RT-qPCR and WB assays.Xenograft nude mouse model bearing HCT116^(hSMO)cells was established and intraperitoneally treated with ursolic acid to investigate the effect on tumor growth in vivo.The body weight and tumor size of mice were assessed regularly every 2 d.The effect of ursolic acid on the apoptosis of tumor tissue was determined by TUNEL assay.The expressions of Bcl-2,Bax,GLI1,p-Akt,Akt,c-Myc,SHH,SUFU mRNA and proteins were measured by RT-qPCR and WB.The levels of Bcl-2,Bax,GLI1,p-Akt,c-Myc and SHH proteins in tumor tissues were also evaluated by immunohistochemistry.RESULTS Ursolic acid significantly inhibited the growth and migration of HCT116^(hSMO)cells in vitro,compared with the control(P<0.05).Meanwhile,ursolic acid also induced apoptosis of HCT116^(hSMO)cells in vitro(P<0.05).Furthermore,SC79(Akt activator)enhanced the expressions of p-Akt,GLI1 and c-Myc,which could be abolished by ursolic acid,and the effect was equal to Akt inhibitor LY294002.The expressions of Bcl-2,GLI1,p-Akt,c-Myc,SHH mRNA and proteins were reduced by ursolic acid,while the levels of Bax and SUFU were increased.Ursolic acid could inhibit the growth and induce the apoptosis of colorectal cancer xenograft in vivo.Similarly,lower levels of Bcl-2,GLI1,p-Akt,c-Myc and SHH,and higher expression of Bax and SUFU were noted in ursolic acid-treated mice.CONCLUSION Ursolic acid can inhibit the growth and induce apoptosis of HCT116^(hSMO)cells both in vitro and in vivo.And the mechanism is related to the suppression of PI3K/Akt-mediated noncanonical Hedgehog signaling pathway.展开更多
文摘2019新型冠状病毒(2019 novel coronavirus,2019-nCoV),因2019年12月发生在中国武汉的不明原因病毒性肺炎病例而被发现,并于2020年1月12日被世界卫生组织(World Health Organization,WHO)命名。在之后的1个月内,2019-nCoV在湖北省内、中国甚至其他国家传播,造成了数以千计病例的出现,同时也引起了民众一定程度的恐慌。本指南的制订希望能够从疾病流行病学、病因学、诊断、治疗、护理、医院感染控制等方面给临床医师、社区居民等提供医疗护理及居家照护的相关指导。
基金National Natural Science Foundation of China(81573813,81173598)Sichuan Provincial Admin⁃istration of Traditional Chinese Medicine of China(2021MS447)+1 种基金Excellent Talent Program of Chengdu University of Tra⁃ditional Chinese Medicine of China(YXRC2019002,ZRYY1917)and Open Research Fund of the State Key Laboratory of Southwestern Chinese Medicine Resources of China(2020XSGG006)。
文摘Oleanolic acid(OA)is a pentacyclic triterpenoid chemical component that exists in natural plants with a molecular formula of C30H48O3 and a molecular weight at 456.71 g·mol-1.OA is widespread in traditional Chinese herbal medicine(Ligustri Lucidi Fructus,Achyranthis Bidentate Radix,Red Sage)and berries(blueberries,grapes).In recent years,because of the extensive pharmacological effects of OA,its advantages in disease treatment have become increasingly prominent and gradually attracted the attention of pharmaceutical researchers.OA has effective therapeutic effects on a series of chronic diseases such as inflammation,cancer,diabetes,and cardiovascular diseases through multiple signaling pathways and various targets.Especially in cancers,such as colorectal cancer,liver cancer,gastric cancer,lung cancer,breast cancer and other malignancies,OA presents substantial efficacy.However,its poor aqueous solubility,needy bioavailability,and unsatisfactory pharmacological activity excessively restrict its clinical application.More importantly,the improper utilization of OA can cause adverse reactions,toxic effects and even damage to organs in some specific situations.With the discovery of various pharmacological effects,the complex action mechanisms of OA,the continuous progress in structural modification of OA,as well as the synthesis of OA derivatives,its application is expanding gradually.Among numerous studies,there is a clear indication that OA and its derivatives,if fully developed,may provide an alternative and cheaper treatment for a variety of chronic diseases.However,the specific molecular mechanisms of OA and its derivatives as an alternative therapy and supplementary therapy for cancer,diabetes,cardiovascular disease and other chronic diseases remain to be clarified.Therefore,it is necessary to further study the pharmacokinetics,pharmacological activity,specific targets and related mechanisms of OA to lay a solid foundation for drug development and the application of OA in clinical settings.
基金National Natural Science Foundation of China(81573813,81173598)Sichuan Provincial Admin⁃istration of Traditional Chinese Medicine of China(2021MS447)+1 种基金Excellent Talent Program of Chengdu University of Tra⁃ditional Chinese Medicine of China(YXRC2019002,ZRYY1917)and Open Research Fund of the State Key Laboratory of Southwestern Chinese Medicine Resources of China(2020XSGG006)。
文摘OBJECTIVE To identify the inhibitory effect of ursolic acid on the colorectal cancer HCT116 cells in vitro and in vivo,and to explore the underlying mechanism.METHODS The smoothened(SMO)gene-silenced human colorectal cancer HCT116^(hSMO)cell line was established by transfection with the lentivirus carrying SMO shRNA.The cytotoxic effect of ursolic acid on HCT116^(hSMO)cells was determined by MTT assay.The effect of ursolic acid on the migration of HCT116^(hSMO)cells was studied by wound healing assay.The effect of ursolic acid on apoptosis of HCT116^(hSMO)cells was explored by Hoechst33342/PI double staining and flow cytometry.The effects of ursolic acid on the expressions of apoptotic marker gene Bcl-2,Bax,caspase-3 and caspase-9 were measured by real-time quantitative RT-PCR(RT-qPCR)and Western blotting(WB)analysis.RT-qPCR and WB were used to examine the relationship between GLI1,c-Myc expression and PI3K/Akt pathway to further investigate the mechanism of GLI1 activation in HCT116^(hSMO)cells.The effects of ursolic acid on the expressions of GLI1,p-Akt,Akt,c-Myc,SHH and SUFU of noncanonical Hedgehog pathway were evaluated by RT-qPCR and WB assays.Xenograft nude mouse model bearing HCT116^(hSMO)cells was established and intraperitoneally treated with ursolic acid to investigate the effect on tumor growth in vivo.The body weight and tumor size of mice were assessed regularly every 2 d.The effect of ursolic acid on the apoptosis of tumor tissue was determined by TUNEL assay.The expressions of Bcl-2,Bax,GLI1,p-Akt,Akt,c-Myc,SHH,SUFU mRNA and proteins were measured by RT-qPCR and WB.The levels of Bcl-2,Bax,GLI1,p-Akt,c-Myc and SHH proteins in tumor tissues were also evaluated by immunohistochemistry.RESULTS Ursolic acid significantly inhibited the growth and migration of HCT116^(hSMO)cells in vitro,compared with the control(P<0.05).Meanwhile,ursolic acid also induced apoptosis of HCT116^(hSMO)cells in vitro(P<0.05).Furthermore,SC79(Akt activator)enhanced the expressions of p-Akt,GLI1 and c-Myc,which could be abolished by ursolic acid,and the effect was equal to Akt inhibitor LY294002.The expressions of Bcl-2,GLI1,p-Akt,c-Myc,SHH mRNA and proteins were reduced by ursolic acid,while the levels of Bax and SUFU were increased.Ursolic acid could inhibit the growth and induce the apoptosis of colorectal cancer xenograft in vivo.Similarly,lower levels of Bcl-2,GLI1,p-Akt,c-Myc and SHH,and higher expression of Bax and SUFU were noted in ursolic acid-treated mice.CONCLUSION Ursolic acid can inhibit the growth and induce apoptosis of HCT116^(hSMO)cells both in vitro and in vivo.And the mechanism is related to the suppression of PI3K/Akt-mediated noncanonical Hedgehog signaling pathway.