Fast synthesis and screening of materials are vital to the advance of materials science and are an essential component of the Materials Genome Initiative. Here we use copper-oxide superconductors as an example to demo...Fast synthesis and screening of materials are vital to the advance of materials science and are an essential component of the Materials Genome Initiative. Here we use copper-oxide superconductors as an example to demonstrate the power of integrating combinatorial molecular beam epitaxy synthesis with high-throughput electric transport measurements. Leveraging this method, we have generated a phase diagram with more than 800 compositions in order to unravel the doping dependence of interface superconductivity. In another application of the same method, we have studied the superconductorto-insulator quantum phase transition with unprecedented accuracy in tuning the chemical doping level.展开更多
文摘Fast synthesis and screening of materials are vital to the advance of materials science and are an essential component of the Materials Genome Initiative. Here we use copper-oxide superconductors as an example to demonstrate the power of integrating combinatorial molecular beam epitaxy synthesis with high-throughput electric transport measurements. Leveraging this method, we have generated a phase diagram with more than 800 compositions in order to unravel the doping dependence of interface superconductivity. In another application of the same method, we have studied the superconductorto-insulator quantum phase transition with unprecedented accuracy in tuning the chemical doping level.