The presence of SnZn-related defects in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)absorber results in large irreversible energy loss and extra irreversible electron-hole non-radiative recombination,thus hindering the efficiency enh...The presence of SnZn-related defects in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)absorber results in large irreversible energy loss and extra irreversible electron-hole non-radiative recombination,thus hindering the efficiency enhancement of CZTSSe devices.Although the incorporation of Ag in CZTSSe can effectively suppress the SnZn-related defects and significantly improve the resulting cell performance,an excellent efficiency has not been achieved to date primarily owing to the poor electrical-conductivity and the low carrier density of the CZTSSe film induced by Ag substitution.Herein,this study exquisitely devises an Ag/H co-doping strategy in CZTSSe absorber via Ag substitution programs followed by hydrogen-plasma treatment procedure to suppress SnZn defects for achieving efficient CZTSSe devices.In-depth investigation results demonstrate that the incorporation of H in Ag-based CZTSSe absorber is expected to improve the poor electrical-conductivity and the low carrier density caused by Ag substitution.Importantly,the C=O and O-H functional groups induced by hydrogen incorporation,serving as an electron donor,can interact with under-coordinated cations in CZTSSe material,effectively passivating the SnZn-related defects.Consequently,the incorporation of an appropriate amount of Ag/H in CZTSSe mitigates carrier non-radiative recombination,prolongs minority carrier lifetime,and thus yields a champion efficiency of 14.74%,showing its promising application in kesterite-based CZTSSe devices.展开更多
Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we pro...Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.展开更多
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells suffer from severe carrier recombination,limiting the photovoltaic performance.Unfavorable energy band alignment at the p-n junction and defective front interface are ...Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells suffer from severe carrier recombination,limiting the photovoltaic performance.Unfavorable energy band alignment at the p-n junction and defective front interface are two main causes.Herein,oxygen incorporation in CZTSSe via absorber air-annealing was developed as a strategy to optimize its surface photoelectric property and reduce the defects.With optimized oxygen incorporation conditions,the carrier separation and collection behavior at the front interface of the device is improved.In particular,it is found that oxygen incorporated absorber exhibits increased band bending,larger depletion region width,and suppressed absorber defects.These indicate the dynamic factors for carrier separation become stronger.Meanwhile,the increased potential difference between grain boundaries and intra grains combined with the decreased concentration of interface deep level defect in the absorber provide a better path for carrier transport.As a consequence,the champion efficiency of CZTSSe solar cells has been improved from 9.74%to 12.04%with significantly improved open-circuit voltage after optimized air-annealing condition.This work provides a new insight for interface engineering to improve the photoelectric conversion efficiency of CZTSSe devices.展开更多
The environmentally friendly Cu_(2)ZnSn(S,Se)_(4)(CZTSSe) compounds are promising direct bandgap materials for application in thin film solar cells, but the spontaneous surface defects disordering would lead to large ...The environmentally friendly Cu_(2)ZnSn(S,Se)_(4)(CZTSSe) compounds are promising direct bandgap materials for application in thin film solar cells, but the spontaneous surface defects disordering would lead to large open-circuit voltage deficit(V_(oc,deficit)) and significantly limit kesterite photovoltaics performance,primarily arising from the generated more recombination centers and insufficient p to n conversion at p-n junction. Herein, we establish a surface defects ordering structure in CZTSSe system via local substitution of Cu by Ag to suppress disordered Cu_(Zn) defects and generate benign n-type Zn_(Ag) donors. Taking advantage of the decreased annealing temperature of Ag F post deposition treatment(PDT), the high concentration of Ag incorporated into surface absorber facilitates the formation of surface ordered defect environment similar to that of efficient CIGS PV. The manipulation of highly doped surface structure could effectively reduce recombination centers, increase depletion region width and enlarge the band bending near p-n junction. As a result, the Ag F-PDT device finally achieves maximum efficiency of 12.34% with enhanced V_(oc) of 0.496 V. These results offer a new solution route in surface defects and energy-level engineering, and open the way to build up high quality p-n junction for future development of kesterite technology.展开更多
The low efficiency of oxygen evolution reaction(OER) is regarded as one of the major roadblocks for metal-air batteries and water electrolysis.Herein,a high-performance OER catalyst of NiFe_(0.2)(oxy)hydroxide(NiFe_(0...The low efficiency of oxygen evolution reaction(OER) is regarded as one of the major roadblocks for metal-air batteries and water electrolysis.Herein,a high-performance OER catalyst of NiFe_(0.2)(oxy)hydroxide(NiFe_(0.2)-O_(x)H_(y)) was developed through topotactic transformation of a Prussian blue analogue in an alkaline solution,which exhibits a low overpotential of only 263 mV to reach a current density of 10 mA cm^(-2) and a small Tafel slope of 35 mV dec-1.Ex-situ/operando Raman spectroscopy results indicated that the phase structure of NiFe_(0.2)-O_(x)H_(y) was irreversibly transformed from the type of α-Ni(OH)_(2) to γ-NiOOH with applying an anodic potential,while ex-situ/operando 57Fe Mossbauer spectroscopic studies evidenced the in-situ production of abundant high-valent iron species under OER conditions,which effectively promoted the OER catalysis.Our work elucidates that the amount of high-valent iron species in-situ produced in the NiFe(oxy)hydroxide has a positive correlation with its water oxidation reaction performance,which further deepens the understanding of the mechanism of NiFe-based electrocatalysts.展开更多
The development of kesterite photovoltaic solar cells has been hindered by large open-circuit voltage(V_(oc))deficit.Recently,Snzn deep point defect and associative defect cluster have been recognized as the main culp...The development of kesterite photovoltaic solar cells has been hindered by large open-circuit voltage(V_(oc))deficit.Recently,Snzn deep point defect and associative defect cluster have been recognized as the main culprit for the Voc losses.Therefore,manipulating the deep-level donor of Snzn antisite defects is crucial for breaking through the bottleneck of present Cu_(2) ZnSn(S,Se)_(4)(CZTSSe)photovoltaic technology.In this study,the Snzn deep traps in CZTSSe absorber layer are suppressed by incorporation of Ge.The energy levels and concentration of Snzn defects measured by deep-level transient spectroscopy(DLTS)decrease significantly.In addition,the grain growth of CZTSSe films is also promoted due to Ge implantation,yielding the high quality absorber layer.Consequently,the efficiency of CZTSSe solar cells increases from 9.15%to 11.48%,largely attributed to the 41 mV Voc increment.展开更多
Photoacoustic imaging has many advantages in ophthalmic application including high-resolution,requirement of no exogenous contrast agent,and noninvasive acquisition of both morphologic and functional information.Howev...Photoacoustic imaging has many advantages in ophthalmic application including high-resolution,requirement of no exogenous contrast agent,and noninvasive acquisition of both morphologic and functional information.However,due to the limited depth of focus of the imaging method and large curvature of the eye,it remains a challenge to obtain high quality vascular image of entire anterior segment.Here,we proposed a new method to achieve high quality imaging of anterior segment.The new method applied a curvature imaging strategy based on only one time scanning,and hence is time efficient and more suitable for ophthalmic imaging compared to previously reported methods using similar strategy.A custom-built photoacoustic imaging system was adapted for ophthalmic application and a customized image processing method was developed to quantitatively analyze both morphologic and functional information in vasculature of the anterior segment.The results showed that the new method improved the image quality of anterior segment significantly compared to that of conventional high resolution photoacoustic imaging.More importantly,we applied the new method to study ophthalmic disease in an in vivo mouse model for the first time.The results verified the suitability and advantages of the new method for imaging the entire anterior segment and the numerous potentials of applying it in ophthalmic imaging in future.展开更多
Although silver(Ag) substitution offers several benefits in eliminating bulk defects and facilitating interface type inversion for Cu2ZnSn(S,Se)4(CZTSSe) photovoltaic(PV) technology, its further development is still h...Although silver(Ag) substitution offers several benefits in eliminating bulk defects and facilitating interface type inversion for Cu2ZnSn(S,Se)4(CZTSSe) photovoltaic(PV) technology, its further development is still hindered by the fairly low electrical conductivity due to the significant decrease of acceptors amount.In this work, a versatile Li–Ag co-doping strategy is demonstrated to mitigate the poor electrical conductivity arising from Ag through direct incorporating Li via postdeposition treatment(PDT) on top of the Ag-substituted CZTSSe absorber. Depth characterizations demonstrate that Li incorporation increases ptype carrier concentration, improves the carrier collection within the bulk, reduces the defects energy level as well as inverts the electric field polarity at grain boundaries(GBs) for Ag-substituted CZTSSe system. Benefiting from this lithium-assisted complex engineering of electrical performance both in grain interior(GI) and GBs, the power conversion efficiency(PCE) is finally increased from 9.21% to 10.29%. This systematic study represents an effective way to overcome the challenges encountered in Ag substitution,and these findings support a new aspect that the synergistic effects of double cation dopant will further pave the way for the development of high efficiency kesterite PV technology.展开更多
基金supported by the National Natural Science Foundation of China(51802081,62074052,and 62104061)the Natural Science Foundation of Henan Province(232300420145).
文摘The presence of SnZn-related defects in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)absorber results in large irreversible energy loss and extra irreversible electron-hole non-radiative recombination,thus hindering the efficiency enhancement of CZTSSe devices.Although the incorporation of Ag in CZTSSe can effectively suppress the SnZn-related defects and significantly improve the resulting cell performance,an excellent efficiency has not been achieved to date primarily owing to the poor electrical-conductivity and the low carrier density of the CZTSSe film induced by Ag substitution.Herein,this study exquisitely devises an Ag/H co-doping strategy in CZTSSe absorber via Ag substitution programs followed by hydrogen-plasma treatment procedure to suppress SnZn defects for achieving efficient CZTSSe devices.In-depth investigation results demonstrate that the incorporation of H in Ag-based CZTSSe absorber is expected to improve the poor electrical-conductivity and the low carrier density caused by Ag substitution.Importantly,the C=O and O-H functional groups induced by hydrogen incorporation,serving as an electron donor,can interact with under-coordinated cations in CZTSSe material,effectively passivating the SnZn-related defects.Consequently,the incorporation of an appropriate amount of Ag/H in CZTSSe mitigates carrier non-radiative recombination,prolongs minority carrier lifetime,and thus yields a champion efficiency of 14.74%,showing its promising application in kesterite-based CZTSSe devices.
基金National Natural Science Foundation of China (62104061, 62074052, 61974173 and 52072327)。
文摘Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.
基金supported by the National Natural Science Foundation of China(62074052,61974173,52072327)the Joint Talent Cultivation Funds of NSFC-HN(U1904192)the Science and Technology Innovation Talents in Universities of Henan Province(21HASTIT023)。
文摘Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells suffer from severe carrier recombination,limiting the photovoltaic performance.Unfavorable energy band alignment at the p-n junction and defective front interface are two main causes.Herein,oxygen incorporation in CZTSSe via absorber air-annealing was developed as a strategy to optimize its surface photoelectric property and reduce the defects.With optimized oxygen incorporation conditions,the carrier separation and collection behavior at the front interface of the device is improved.In particular,it is found that oxygen incorporated absorber exhibits increased band bending,larger depletion region width,and suppressed absorber defects.These indicate the dynamic factors for carrier separation become stronger.Meanwhile,the increased potential difference between grain boundaries and intra grains combined with the decreased concentration of interface deep level defect in the absorber provide a better path for carrier transport.As a consequence,the champion efficiency of CZTSSe solar cells has been improved from 9.74%to 12.04%with significantly improved open-circuit voltage after optimized air-annealing condition.This work provides a new insight for interface engineering to improve the photoelectric conversion efficiency of CZTSSe devices.
基金supported by the National Natural Science Foundation of China(61874159,62074052,61974173,52072327,51702085 and 51802081)the Joint Talent Cultivation Funds of NSFC-HN(U1704151 and U1904192)+1 种基金the Zhongyuan Thousand Talents(Zhongyuan Scholars)Program of Henan Province(202101510004)the Science and Technology Innovation Talents in Universities of Henan Province(21HASTIT023)。
文摘The environmentally friendly Cu_(2)ZnSn(S,Se)_(4)(CZTSSe) compounds are promising direct bandgap materials for application in thin film solar cells, but the spontaneous surface defects disordering would lead to large open-circuit voltage deficit(V_(oc,deficit)) and significantly limit kesterite photovoltaics performance,primarily arising from the generated more recombination centers and insufficient p to n conversion at p-n junction. Herein, we establish a surface defects ordering structure in CZTSSe system via local substitution of Cu by Ag to suppress disordered Cu_(Zn) defects and generate benign n-type Zn_(Ag) donors. Taking advantage of the decreased annealing temperature of Ag F post deposition treatment(PDT), the high concentration of Ag incorporated into surface absorber facilitates the formation of surface ordered defect environment similar to that of efficient CIGS PV. The manipulation of highly doped surface structure could effectively reduce recombination centers, increase depletion region width and enlarge the band bending near p-n junction. As a result, the Ag F-PDT device finally achieves maximum efficiency of 12.34% with enhanced V_(oc) of 0.496 V. These results offer a new solution route in surface defects and energy-level engineering, and open the way to build up high quality p-n junction for future development of kesterite technology.
基金financially supported by the National Natural Science Foundation of China(21476232,21961142006)the International Partnership Program of Chinese Academy of Sciences(121421KYSB20170020)the State Key Laboratory of Catalysis in Dalian Institute of Chemical Physics(N-16-07)。
文摘The low efficiency of oxygen evolution reaction(OER) is regarded as one of the major roadblocks for metal-air batteries and water electrolysis.Herein,a high-performance OER catalyst of NiFe_(0.2)(oxy)hydroxide(NiFe_(0.2)-O_(x)H_(y)) was developed through topotactic transformation of a Prussian blue analogue in an alkaline solution,which exhibits a low overpotential of only 263 mV to reach a current density of 10 mA cm^(-2) and a small Tafel slope of 35 mV dec-1.Ex-situ/operando Raman spectroscopy results indicated that the phase structure of NiFe_(0.2)-O_(x)H_(y) was irreversibly transformed from the type of α-Ni(OH)_(2) to γ-NiOOH with applying an anodic potential,while ex-situ/operando 57Fe Mossbauer spectroscopic studies evidenced the in-situ production of abundant high-valent iron species under OER conditions,which effectively promoted the OER catalysis.Our work elucidates that the amount of high-valent iron species in-situ produced in the NiFe(oxy)hydroxide has a positive correlation with its water oxidation reaction performance,which further deepens the understanding of the mechanism of NiFe-based electrocatalysts.
基金financially supported by the National Natural Science Foundation of China(U1904192,62074052,52072327,61974173,61874159 and 51802081)the Key Science and Technology Research Project of Education Department of Henan Province(19A140003)+1 种基金the Key Science and Technology Program of Henan Province(192102210001)Zhongyuan Thousand Talents(Zhongyuan Scholars)Program of Henan Province(202101510004)。
文摘The development of kesterite photovoltaic solar cells has been hindered by large open-circuit voltage(V_(oc))deficit.Recently,Snzn deep point defect and associative defect cluster have been recognized as the main culprit for the Voc losses.Therefore,manipulating the deep-level donor of Snzn antisite defects is crucial for breaking through the bottleneck of present Cu_(2) ZnSn(S,Se)_(4)(CZTSSe)photovoltaic technology.In this study,the Snzn deep traps in CZTSSe absorber layer are suppressed by incorporation of Ge.The energy levels and concentration of Snzn defects measured by deep-level transient spectroscopy(DLTS)decrease significantly.In addition,the grain growth of CZTSSe films is also promoted due to Ge implantation,yielding the high quality absorber layer.Consequently,the efficiency of CZTSSe solar cells increases from 9.15%to 11.48%,largely attributed to the 41 mV Voc increment.
基金financial supports from the National Natural Science Foundation of China(NSFC)(Grants No.91739117,31570952,81873919,81371662 and 81927807)Shenzhen Science and Technology Innovation(Grant No.JCYJ20170413153129570)+1 种基金Beijing Natural Science Foundation of China(Grant No.3122010)。
文摘Photoacoustic imaging has many advantages in ophthalmic application including high-resolution,requirement of no exogenous contrast agent,and noninvasive acquisition of both morphologic and functional information.However,due to the limited depth of focus of the imaging method and large curvature of the eye,it remains a challenge to obtain high quality vascular image of entire anterior segment.Here,we proposed a new method to achieve high quality imaging of anterior segment.The new method applied a curvature imaging strategy based on only one time scanning,and hence is time efficient and more suitable for ophthalmic imaging compared to previously reported methods using similar strategy.A custom-built photoacoustic imaging system was adapted for ophthalmic application and a customized image processing method was developed to quantitatively analyze both morphologic and functional information in vasculature of the anterior segment.The results showed that the new method improved the image quality of anterior segment significantly compared to that of conventional high resolution photoacoustic imaging.More importantly,we applied the new method to study ophthalmic disease in an in vivo mouse model for the first time.The results verified the suitability and advantages of the new method for imaging the entire anterior segment and the numerous potentials of applying it in ophthalmic imaging in future.
基金the National Natural Science Foundation of China(61874159,61974173,51702085,51802081 and 21603058)the Joint Talent Cultivation Funds of NSFC-HN(U1704151)the Science and Technology Innovation Talents in Universities of Henan Province(18HASTIT016)。
文摘Although silver(Ag) substitution offers several benefits in eliminating bulk defects and facilitating interface type inversion for Cu2ZnSn(S,Se)4(CZTSSe) photovoltaic(PV) technology, its further development is still hindered by the fairly low electrical conductivity due to the significant decrease of acceptors amount.In this work, a versatile Li–Ag co-doping strategy is demonstrated to mitigate the poor electrical conductivity arising from Ag through direct incorporating Li via postdeposition treatment(PDT) on top of the Ag-substituted CZTSSe absorber. Depth characterizations demonstrate that Li incorporation increases ptype carrier concentration, improves the carrier collection within the bulk, reduces the defects energy level as well as inverts the electric field polarity at grain boundaries(GBs) for Ag-substituted CZTSSe system. Benefiting from this lithium-assisted complex engineering of electrical performance both in grain interior(GI) and GBs, the power conversion efficiency(PCE) is finally increased from 9.21% to 10.29%. This systematic study represents an effective way to overcome the challenges encountered in Ag substitution,and these findings support a new aspect that the synergistic effects of double cation dopant will further pave the way for the development of high efficiency kesterite PV technology.