期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Single event effects evaluation on convolution neural network in Xilinx 28 nm system on chip
1
作者 赵旭 杜雪成 +4 位作者 熊旭 马超 杨卫涛 郑波 周超 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期638-644,共7页
Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic partic... Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips. 展开更多
关键词 single event effects convolutional neural networks alpha particle system on chip fault injection
在线阅读 下载PDF
Construction of smart propellant with multi-morphologies
2
作者 weitao yang Yuchen Gao +4 位作者 Rui Hu Manman Li Fengqi Zhao He Jiang Xuan Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期180-185,共6页
Smart materials,which exhibit shape memory behavior in response to external stimuli,have shown great potential for use in biomedical applications.In this study,an energetic composite was fabricated using a UV-assisted... Smart materials,which exhibit shape memory behavior in response to external stimuli,have shown great potential for use in biomedical applications.In this study,an energetic composite was fabricated using a UV-assisted DIW 3D printing technique and a shape memory material(SMP)as the binder.This composite has the ability to reduce the impact of external factors and adjust gun propellant combustion behavior.The composition and 3D printing process were delineated,while the internal structure and shape memory performance of the composite material were studied.The energetic SMP composite exhibits an angle of reversal of 18 s at 70°,with a maximum elongation typically reaching up to 280% of the original length and a recovery length of approximately 105%during ten cycles.Additionally,thermal decomposition and combustion behavior were also demonstrated for the energetic SMP composite. 展开更多
关键词 Smart material Gun propellants Multi-morphologies SELF-REGULATION
在线阅读 下载PDF
Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC
3
作者 Xu Zhao Xuecheng Du +3 位作者 Chao Ma Zhiliang Hu weitao yang Bo Zheng 《Chinese Physics B》 2025年第1期477-484,共8页
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect... The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips. 展开更多
关键词 single event effects atmospheric neutron system on chip convolutional neural network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部