Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon...Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon derived from grapefruit peel is successfully fabricated in this work,and particularly the composite cathode with carbon carrier quality percentage of 20 wt%delivers the specific capacity of 391.2 mAh g^(−1)at 0.1 A g^(−1),outstanding cyclic stability of 92.17%after 3000 cycles at 5 A g^(−1),and remarkable energy density of 553.12 Wh kg^(−1) together with superior coulombic efficiency of~100%.Additionally,the cathodic biosafety is further explored specifically through in vitro cell toxicity experiments,which verifies its tremendous potential in the application of clinical medicine.Besides,Zinc ion energy storage mechanism of the cathode is mainly discussed from the aspects of Jahn–Teller effect and Mn domains distribution combined with theoretical analysis and experimental data.Thus,a novel perspective of the conversion from biomass waste to biocompatible Mn-based cathode is successfully developed.展开更多
Single-atom catalysts(SACs)have been a research hotspot due to their high catalytic activity,selectivity,and atomic utilization rates.However,the theoretical research of SACs is relatively fragmented,which restricts f...Single-atom catalysts(SACs)have been a research hotspot due to their high catalytic activity,selectivity,and atomic utilization rates.However,the theoretical research of SACs is relatively fragmented,which restricts further understanding of SAC stability and activity.To address this issue,we report our analysis of the geometric structures,electronic characteristics,stabilities,catalytic activities,and descriptors of 132 graphene-based singleatom catalysts(M/GS)obtained from density functional theory calculations.Based on the calculated formation and binding energies,a stability map of M/GS was established to guide catalyst synthesis.The effects of metal atoms and support on the charge of metal atoms are discussed.The catalytic activities of M/GS in both nitrogen and oxygen reduction reactions are predicted based on the calculated magnetic moment and the adsorption energy.Combined with the electronegativity and d-band center,a two-dimensional descriptor is proposed to predict the O adsorption energy on M/GS.More importantly,this theoretical study provides predictive guidance for the preparation and rational design of highly stable and active single-atom catalysts using nitrogen doping on graphene.展开更多
Hydrogen energy has been recognized as“Ultimate Power Source”in the 21st century.It is a boon in these days of energy crunches and concerns about climate change because of the characterized advantages,such as high e...Hydrogen energy has been recognized as“Ultimate Power Source”in the 21st century.It is a boon in these days of energy crunches and concerns about climate change because of the characterized advantages,such as high energy density,large calorific value,abundant resource,zero pollution,zero carbon emission,storable and renewable.State-of-the-art perspectives on tuning the stable thermodynamics and sluggish kinetics of dehydrogenation and re-hydrogenation of LiBH4,which has been regarded as a promising hydrogen storage alternative for onboard energy carrier applications have been discussed.Five major technological approaches are involved,including nanoengineering,catalyst modification,ions substitution,reactant destabilization and a novel process termed as high-energy ball milling with in-situ aerosol spraying(BMAS).It is worth noting that BMAS has the potential to help overcome the kinetic barriers for thermodynamically favorable systems like LiBH4 t MgH2 mixture and provide thermodynamic driving force to enhance hydrogen release at a lower temperature.展开更多
基金supported by the National Natural Science Foundation of China[Grant no.51821004].
文摘Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon derived from grapefruit peel is successfully fabricated in this work,and particularly the composite cathode with carbon carrier quality percentage of 20 wt%delivers the specific capacity of 391.2 mAh g^(−1)at 0.1 A g^(−1),outstanding cyclic stability of 92.17%after 3000 cycles at 5 A g^(−1),and remarkable energy density of 553.12 Wh kg^(−1) together with superior coulombic efficiency of~100%.Additionally,the cathodic biosafety is further explored specifically through in vitro cell toxicity experiments,which verifies its tremendous potential in the application of clinical medicine.Besides,Zinc ion energy storage mechanism of the cathode is mainly discussed from the aspects of Jahn–Teller effect and Mn domains distribution combined with theoretical analysis and experimental data.Thus,a novel perspective of the conversion from biomass waste to biocompatible Mn-based cathode is successfully developed.
基金the National Natural Science Foundation of China(No.91545122)Beijing Natural Science Foundation(2182066)+1 种基金Natural Science Foundation of Hebei Province of China(B2018502067)the Fundamental Research Funds for the Central Universities(2017XS121).
文摘Single-atom catalysts(SACs)have been a research hotspot due to their high catalytic activity,selectivity,and atomic utilization rates.However,the theoretical research of SACs is relatively fragmented,which restricts further understanding of SAC stability and activity.To address this issue,we report our analysis of the geometric structures,electronic characteristics,stabilities,catalytic activities,and descriptors of 132 graphene-based singleatom catalysts(M/GS)obtained from density functional theory calculations.Based on the calculated formation and binding energies,a stability map of M/GS was established to guide catalyst synthesis.The effects of metal atoms and support on the charge of metal atoms are discussed.The catalytic activities of M/GS in both nitrogen and oxygen reduction reactions are predicted based on the calculated magnetic moment and the adsorption energy.Combined with the electronegativity and d-band center,a two-dimensional descriptor is proposed to predict the O adsorption energy on M/GS.More importantly,this theoretical study provides predictive guidance for the preparation and rational design of highly stable and active single-atom catalysts using nitrogen doping on graphene.
基金the U.S.National Science Foundation(NSF)with the Award No.CMMI-1261782.
文摘Hydrogen energy has been recognized as“Ultimate Power Source”in the 21st century.It is a boon in these days of energy crunches and concerns about climate change because of the characterized advantages,such as high energy density,large calorific value,abundant resource,zero pollution,zero carbon emission,storable and renewable.State-of-the-art perspectives on tuning the stable thermodynamics and sluggish kinetics of dehydrogenation and re-hydrogenation of LiBH4,which has been regarded as a promising hydrogen storage alternative for onboard energy carrier applications have been discussed.Five major technological approaches are involved,including nanoengineering,catalyst modification,ions substitution,reactant destabilization and a novel process termed as high-energy ball milling with in-situ aerosol spraying(BMAS).It is worth noting that BMAS has the potential to help overcome the kinetic barriers for thermodynamically favorable systems like LiBH4 t MgH2 mixture and provide thermodynamic driving force to enhance hydrogen release at a lower temperature.