The intricate grinding process exposes various cleavage surfaces of mineral particles.This paper systematically investigates the structural characteristics of exposed malachite crystal surfaces and the adsorption beha...The intricate grinding process exposes various cleavage surfaces of mineral particles.This paper systematically investigates the structural characteristics of exposed malachite crystal surfaces and the adsorption behavior and mechanism of hydroxamic acid and water molecules using first-principle density functional theory.The study reveals anisotropic surface energies among crystal surfaces,ranked as(201)>(100)>(110)>(001)>(010)>(201).The adsorption of hydroxamic acid and water molecules on malachite surfaces also exhibited anisotropy.The difference in adsorption strength between hydroxamic acid and water molecules on the six exposed surfaces followed the order of(110)>(100)>(010)>(001)>(201)>(201),and the resistance of water molecules to the adsorption of hydroxamic acid on the six exposed surfaces was(110)>(201)>(010)>(201)>(001)>(100).It indicates that the reagent exhibits a strong competitive advantage in adsorption on the(100)surface,and the hindrance of water molecules to reagent adsorption is relatively small,which is favorable for flotation.This study provides theoretical references and innovative insights for the precise design of flotation reagents,as well as for the meticulous optimization of mineral surface interfaces,with the objective of enhancing flotation separation.展开更多
本研究旨在建立辛芍组方中灯盏甲素的PK-PD结合模型。首先采用液质联用法测定大鼠脑缺血再灌注损伤模型给药后的不同时间点所得血浆样本中灯盏甲素的药物浓度,获得药时曲线;同时采用试剂盒测定不同时间点所得血浆样本中的两种药效指标(...本研究旨在建立辛芍组方中灯盏甲素的PK-PD结合模型。首先采用液质联用法测定大鼠脑缺血再灌注损伤模型给药后的不同时间点所得血浆样本中灯盏甲素的药物浓度,获得药时曲线;同时采用试剂盒测定不同时间点所得血浆样本中的两种药效指标(SOD和LDH),获得时效曲线。然后用Win Non Lin软件采用房室模型的分析方法对灯盏甲素的药代动力学参数进行拟合,获得PK参数。在此基础之上,固定相关的药代动力学参数,对时效关系进行拟合,得到相关的PD参数,根据PD参数,建立辛芍组方中灯盏甲素的PK-PD结合模型。当以SOD为药效指标时,可得辛芍组方中灯盏甲素的PK-PD模型为E=20.67+(1.22×Ce)/(Ce+5.58);当以LDH为药效指标时,可得辛芍组方中代表成分灯盏甲素的PK-PD模型为E=214.17-(32.72×Ce)/(Ce+0.08)。结果表明,SOD和LDH的浓度与灯盏甲素的浓度存在一定的相关性。辛芍组方及其主要活性成分灯盏甲素可通过提高SOD、降低LDH发挥抗氧化作用来实现保护脑缺血再灌注损伤。展开更多
The results of evaluation on field control efficacy of Trichogramma dendrolimi against Ostrinia furnacalis showed that the correction rates of Ostrinia furnacalis egg mass parasitism were 71.75% and 73.57%,the average...The results of evaluation on field control efficacy of Trichogramma dendrolimi against Ostrinia furnacalis showed that the correction rates of Ostrinia furnacalis egg mass parasitism were 71.75% and 73.57%,the average control effect were 65.85% and 70.24%,the restoration yield loss rates were 6.78% and 7.97%,input-output ratio at 1:27.8 and 1:33.5 in Longjiang county of Heilongjiang province in 2009 and 2010,respectively.The technology is a integration of advanced,practical,environmental safety,effective biocontrol measures,embodies the "public plant protection,green plant protection" fully,has significant economic,social and ecological benefits.展开更多
基金Project(52074356)supported by the National Natural Science Foundation of ChinaProject(BGRIMM-KJSKL-2023-06)supported by the Open Foundation of State Key Laboratory of Mineral Processing,China+4 种基金Project(2022RC1183)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(kq2009095)supported by the Changsha Science and Technology Project(Outstanding Innovative Youth Training Program),ChinaProject(2023CXQD002)supported by the Innovation Driven Program of Central South University,ChinaProject(B14034)supported by the National“111”Project,ChinaProject(2024ZZTS0655)supported by the Independent Exploration and Innovation Project for Graduate Students of Central South University,China。
文摘The intricate grinding process exposes various cleavage surfaces of mineral particles.This paper systematically investigates the structural characteristics of exposed malachite crystal surfaces and the adsorption behavior and mechanism of hydroxamic acid and water molecules using first-principle density functional theory.The study reveals anisotropic surface energies among crystal surfaces,ranked as(201)>(100)>(110)>(001)>(010)>(201).The adsorption of hydroxamic acid and water molecules on malachite surfaces also exhibited anisotropy.The difference in adsorption strength between hydroxamic acid and water molecules on the six exposed surfaces followed the order of(110)>(100)>(010)>(001)>(201)>(201),and the resistance of water molecules to the adsorption of hydroxamic acid on the six exposed surfaces was(110)>(201)>(010)>(201)>(001)>(100).It indicates that the reagent exhibits a strong competitive advantage in adsorption on the(100)surface,and the hindrance of water molecules to reagent adsorption is relatively small,which is favorable for flotation.This study provides theoretical references and innovative insights for the precise design of flotation reagents,as well as for the meticulous optimization of mineral surface interfaces,with the objective of enhancing flotation separation.
文摘本研究旨在建立辛芍组方中灯盏甲素的PK-PD结合模型。首先采用液质联用法测定大鼠脑缺血再灌注损伤模型给药后的不同时间点所得血浆样本中灯盏甲素的药物浓度,获得药时曲线;同时采用试剂盒测定不同时间点所得血浆样本中的两种药效指标(SOD和LDH),获得时效曲线。然后用Win Non Lin软件采用房室模型的分析方法对灯盏甲素的药代动力学参数进行拟合,获得PK参数。在此基础之上,固定相关的药代动力学参数,对时效关系进行拟合,得到相关的PD参数,根据PD参数,建立辛芍组方中灯盏甲素的PK-PD结合模型。当以SOD为药效指标时,可得辛芍组方中灯盏甲素的PK-PD模型为E=20.67+(1.22×Ce)/(Ce+5.58);当以LDH为药效指标时,可得辛芍组方中代表成分灯盏甲素的PK-PD模型为E=214.17-(32.72×Ce)/(Ce+0.08)。结果表明,SOD和LDH的浓度与灯盏甲素的浓度存在一定的相关性。辛芍组方及其主要活性成分灯盏甲素可通过提高SOD、降低LDH发挥抗氧化作用来实现保护脑缺血再灌注损伤。
基金The National public service sectors (agriculture) research special (201103002)
文摘The results of evaluation on field control efficacy of Trichogramma dendrolimi against Ostrinia furnacalis showed that the correction rates of Ostrinia furnacalis egg mass parasitism were 71.75% and 73.57%,the average control effect were 65.85% and 70.24%,the restoration yield loss rates were 6.78% and 7.97%,input-output ratio at 1:27.8 and 1:33.5 in Longjiang county of Heilongjiang province in 2009 and 2010,respectively.The technology is a integration of advanced,practical,environmental safety,effective biocontrol measures,embodies the "public plant protection,green plant protection" fully,has significant economic,social and ecological benefits.