The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support v...The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support vector machine method, based on statistical learning theory, is put forward. The SVM model was trained and tested by using the existing exploration and exploitation data of Chencun mine of Yima bureau’s as the input data. Then coal reserves within a particular region were calculated. These calculated results and the actual results of the exploration block were compared. The maximum relative error was 10.85%, within the scope of acceptable error limits. The results show that the SVM coal reserve calculation method is reliable. This method is simple, practical and valuable.展开更多
基金Project 072400430420 supported by the Natural Science Foundation of Henan Province
文摘The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support vector machine method, based on statistical learning theory, is put forward. The SVM model was trained and tested by using the existing exploration and exploitation data of Chencun mine of Yima bureau’s as the input data. Then coal reserves within a particular region were calculated. These calculated results and the actual results of the exploration block were compared. The maximum relative error was 10.85%, within the scope of acceptable error limits. The results show that the SVM coal reserve calculation method is reliable. This method is simple, practical and valuable.