期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Fe-N/S-C hybrid electrocatalyst derived from bimetal-organic framework for efficiently electrocatalyzing oxygen reduction reaction in acidic media 被引量:2
1
作者 Shuqin Song Mingmei Wu +4 位作者 Junwei Chen Zhuohua Mo Rui Chen Kun Wang tongwen yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期291-300,I0010,共11页
Heteroatoms doped Fe-N-C electrocatalysts have been widely acknowledged as one of the most promising candidates to replace Pt-based materials for electrocatalyzing oxygen reduction reaction(ORR).However,the complicate... Heteroatoms doped Fe-N-C electrocatalysts have been widely acknowledged as one of the most promising candidates to replace Pt-based materials for electrocatalyzing oxygen reduction reaction(ORR).However,the complicated synthesis method and controversial catalytic mechanism represent a substantial impediment as of today.Herein,a very facile strategy to prepare Fe-N/S-C hybrid through pyrolyzing Zn and Fe bimetallic MOFs is rationally designed.The electrocatalytic ORR performance shows a volcanotype curve with the increment of added Fe content.The half-wave potential(E1/2) for ORR at optimized Fe-N/S-C-10%(10%=n(Fe)/(n(Fe)+n(Zn)),n(Fe) and n(Zn) represent the moles of Fe2+ and Zn2+ in the precursors,respectively) shifts significantly to the positive direction of 19.6 mV with respect to that of Pt/C in acidic media,as well as a high 4 e selectivity and methanol tolerance.After 10,000 potential cycles,E1/2 exhibits a small negative shift of-27.5 mV at Fe-N/S-C-10% compared favorably with Pt/C(~141.0 mV).This can be attributed to:(ⅰ) large specific surface area(849 m^(2)/g) and hierarchically porous structure are favorable for the rapid mass transfer and active sites exposure;(ⅱ) the embedded Fecontaining nanoparticles in porous carbon are difficult to be moved and further agglomerated during the electrochemical accelerated aging test,further improving its stability;(ⅲ) there exist small Fecontaining nanoparticles,uniformly doped N and S,abundant Fe-N as efficiently active sites.This work represents a breakthrough in the development of high-efficient non-precious-metal catalysts(NPMCs)to address the current Pt-based electrocatalysts challenges. 展开更多
关键词 Bimetallic MOFs Fe-N/S-C Oxygen reduction reaction Acidic media
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部