Due to their high safety and low cost,rechargeable aqueous Zn-ion batteries(RAZIBs)have been receiving increased attention and are expected to be the next generation of energy storage systems.However,metal Zn anodes e...Due to their high safety and low cost,rechargeable aqueous Zn-ion batteries(RAZIBs)have been receiving increased attention and are expected to be the next generation of energy storage systems.However,metal Zn anodes exhibit a limited-service life and inferior reversibility owing to the issues of Zn dendrites and side reactions,which severely hinder the further development of RAZIBs.Researchers have attempted to design high-performance Zn anodes by interfacial engineering,including surface modification and the addition of electrolyte additives,to stabilize Zn anodes.The purpose is to achieve uniform Zn nucleation and flat Zn deposition by regulating the deposition behavior of Zn ions,which effectively improves the cycling stability of the Zn anode.This review comprehensively summarizes the reaction mechanisms of interfacial modification for inhibiting the growth of Zn dendrites and the occurrence of side reactions.In addition,the research progress of interfacial engineering strategies for RAZIBs is summarized and classified.Finally,prospects and suggestions are provided for the design of highly reversible Zn anodes.展开更多
Metal selenides owing to their high theoretical capacity and good conductivity are considered as one of the potential candidates for the anode materials of sodium-ion batteries(SIBs).However,their practical applicatio...Metal selenides owing to their high theoretical capacity and good conductivity are considered as one of the potential candidates for the anode materials of sodium-ion batteries(SIBs).However,their practical applications are greatly restricted by the poor cycling performances and complicated synthesis methods.In this work,a sandwich-like Sn Se2/reduced graphene oxide(r GO)composite with a small amount of r GO(7.3%)is synthesized by a simple one-pot solvothermal technique.The as-synthesized Sn Se2/r GO shows improved initial coulombic efficiency(ICE)of 73.7%,high capacity of 402.0 m Ah g-1 after 150 cycles at 0.1 A g-1 with a retention of 86.2%and outstanding rate performances.The abundant Sn-O-C bonds of synthesized material not only accelerate the charge transfer at the interface but also enhance the mechanical strength to accommodate volume variation and prevent active material loss during cycling.Moreover,the compact structure leads to thin solid electrolyte interface(SEI)so that high initial coulombic efficiency was obtained.Furthermore,full cells are assembled to test its potential application.This work offers a simple method to synthesize Sn Se2/r GO as a candidate anode for SIBs.展开更多
It is of great importance to explore a creative route to improve the degradation e ciency of organic pollutants in wastewater.Herein,we construct a unique hybrid system by combining self-powered triboelectric nanogene...It is of great importance to explore a creative route to improve the degradation e ciency of organic pollutants in wastewater.Herein,we construct a unique hybrid system by combining self-powered triboelectric nanogenerator(TENG)with carbon dots-TiO_(2)sheets doped three-dimensional graphene oxide photocatalyst(3 DGA@CDs-TNs),which can significantly enhance the degradation e ciency of brilliant green(BG)and direct blue 5 B(DB)owing to the powerful interaction of TENG and 3 DGA@CDs-TNs photocatalyst.The power output of TENG can be applied for wastewater purification directly,which exhibits a selfpowered electrocatalytic technology.Furthermore,the results also verify that TENG can replace conventional electric catalyst to remove pollutants e ectively from wastewater without any consumption.Subsequently,the unstable fragments and the plausible removal pathways of the two pollutants are proposed.Our work sheds light on the development of e cient and sustainable TENG/photocatalyst system,opening up new opportunities and possibilities for comprehensive utilization of random energy.展开更多
A facile strategy to fabricate gold nanorod@polyacrylic acid/calcium phosphate(Au NR@-PAA/Ca P) yolk–shell nanoparticles(NPs) composed with a PAA/Ca P shell and an Au NR yolk is reported. The asobtained Au NR@PAA/Ca ...A facile strategy to fabricate gold nanorod@polyacrylic acid/calcium phosphate(Au NR@-PAA/Ca P) yolk–shell nanoparticles(NPs) composed with a PAA/Ca P shell and an Au NR yolk is reported. The asobtained Au NR@PAA/Ca P yolk–shell NPs possess ultrahigh doxorubicin(DOX) loading capability(1 mg DOX/mg NPs), superior photothermal conversion property(26%)and p H/near-infrared(NIR) dual-responsive drug delivery performance. The released DOX continuously increased due to the damage of the Ca P shell at low p H values. When the DOX-loaded Au NR@PAA/Ca P yolk–shell NPs wereexposed to NIR irradiation, a burst-like drug release occurs owing to the heat produced by the Au NRs. Furthermore,Au NR@PAA/Ca P yolk–shell NPs are successfully employed for synergic dual-mode X-ray computed tomography/photoacoustic imaging and chemo-photothermal cancer therapy. Therefore, this work brings new insights for the synthesis of multifunctional nanomaterials and extends theranostic applications.展开更多
The present study investigated the anti-diabetic activity and potential mechanisms of sea cucumber gonad hydrolysates(SCGH)in a rat model of type II diabetes induced by streptozotocin(STZ)combined with high-fat diet(H...The present study investigated the anti-diabetic activity and potential mechanisms of sea cucumber gonad hydrolysates(SCGH)in a rat model of type II diabetes induced by streptozotocin(STZ)combined with high-fat diet(HFD).Results showed that SCGH significantly reduced water intake,fasting blood glucose level and glycated hemoglobin level.Moreover,the oral glucose tolerance,insulin resistance and plasma lipid level in diabetic rats were also alleviated.Furthermore,histological analysis showed that SCGH effectively protected the tissue structure of liver.In addition,mechanism studies showed that SCGH improved glucose metabolism via activating the IRS/Akt signaling pathway,and promoted lipid metabolism via activating the AMPK signaling pathway.In summary,these findings suggested that SCGH have potential anti-diabetic effects by improving insulin resistance and lipid metabolism disorders.展开更多
Mixed oxygen-ionic and electronic conducting membranes of SrFe(Cu)O3-δ were prepared by solid-state reaction method. The crystal structure, oxygen nonstoichiometry, and phase stability of the materials were studied...Mixed oxygen-ionic and electronic conducting membranes of SrFe(Cu)O3-δ were prepared by solid-state reaction method. The crystal structure, oxygen nonstoichiometry, and phase stability of the materials were studied by TGA and XRD. Oxygen permeation fluxes through these membranes were studied at operating temperature ranging from 750 to 950 ℃. Results showed that doping Cu in SrFeO3-δ compound had a significant effect on the formation of single-phased perovskite structure. For SrFe1-xCu2O3-δ series materials, the oxygen nonstoichiometry and the oxygen permeation flux increased considerably with the increase of Cu-doping content (x = 0.1-0.3). The sintering property of the membrane decreased significantly when the Cu substitution amount reached 40%. SrFe0.7Cu0.3O3-δ showed high oxygen permeation flux, but SrCuO2 and Sr2Fe2O5 phases formed in the compound after oxygen permeation test induced cracks in the membrane.展开更多
Objective Many physiological and pathological conditions,including cyanotic congenital heart diseases(CCHD),are accompanied by chronic hypoxia,which might interfere with the transcription process.However,the transcrip...Objective Many physiological and pathological conditions,including cyanotic congenital heart diseases(CCHD),are accompanied by chronic hypoxia,which might interfere with the transcription process.However,the transcriptome profile in peripheral blood under hypoxia is still unidentified.The present work aimed to explore the transcriptional profile alteration of peripheral blood in chronic hypoxia.Methods The present study used a chronic hypoxia rat model to simulate the hypoxic state of CCHD patients.Two groups of Sprague-Dawley rats(n=6 per group)were either exposed to hypoxia(10%O2)or normoxia(21%O2)for 3 weeks.Body weight was measured weekly.Peripheral blood was collected and total RNA was extracted for RNA-Seq at the end of the hypoxia treatment.After quality assessment,the library was sequenced by the Illumina Hiseq platform.The differentially expressed genes were screened(false discovery rate<0.05 and fold change>2).The functional annotation analysis and cluster analysis of differentially expressed genes were performed based on the adjusted P-value(padj<0.05).Results Compared with the control group,the body weight of the rats in the hypoxia group was significantly lowered(P<0.01).RNA-Seq results showed that the transcriptome patterns of the two groups had significant differences.In total,872 genes were identified as differentially expressed.Among all,803 genes were downregulated,while only 69 genes were up-regulated in the hypoxia group.The functional enrichment analysis of the 872 genes showed that multiple biological processes involved,such as porphyrin-containing compound metabolic process,hemoglobin complex and oxygen transporter activity.Conclusions Our study demonstrated the transcriptional profile alteration in peripheral blood of chronic hypoxia rat model.This study provided basic data and directions to further understand the physiological and pathological changes in patients with CCHD.展开更多
Oxides with different crystal phases can have important effects on the configuration of surface atoms,which can further affect the distribution of hydrogenation sites and acidic sites as well as the competitions of th...Oxides with different crystal phases can have important effects on the configuration of surface atoms,which can further affect the distribution of hydrogenation sites and acidic sites as well as the competitions of these varied types of catalytic sites.This could be potentially used to tailor the distribution of the products.In this study,zirconium oxides with different crystal phases supported copper catalysts were prepared for the hydrogenation of the biomass-derived furfural,vanillin,etc.The results showed that both calcination temperature and Cu species affected the shift of zirconia from tetragonal phase to the monoclinic phase.Monoclinic zirconia supported copper catalyst can effectively catalyze the hydrogenation of furfural to furfuryl alcohol via hydrogenation route due to its low amount of Brønsted acidic sites,although the surface area and the exposed metallic Cu surface area were much lower than the tetragonal zirconia supported copper catalyst.Zirconia with tetragonal or tetragonal/monoclinic phases supported copper catalysts contain abundant acidic sites and especially the Br?nsted acidic sites,which catalyzed mainly the conversion of furfural via the acid-catalyzed routes such as the acetalization,rather than the hydrogenation.The acidic sites over the Cu/ZrO_(2)catalyst played more predominant roles than the hydrogenation sites in determining the conversion of the organics like furfural and vanillin.展开更多
A quasi-vertical Ga N Schottky barrier diode with a hybrid anode structure is proposed to trade off the on-resistance and the breakdown voltage.By inserting a Si N dielectric between the anode metal with a relatively ...A quasi-vertical Ga N Schottky barrier diode with a hybrid anode structure is proposed to trade off the on-resistance and the breakdown voltage.By inserting a Si N dielectric between the anode metal with a relatively small length,it suppresses the electric field crowding effect without presenting an obvious effect on the forward characteristics.The enhanced breakdown voltage is ascribed to the charge-coupling effect between the insulation dielectric layer and Ga N.On the other hand,the current density is decreased beneath the dielectric layer with the increasing length of the Si N,resulting in a high on-resistance.Furthermore,the introduction of the field plate on the side wall forms an metal-oxide-semiconductor(MOS)channel and decreases the series resistance,but also shows an obvious electric field crowding effect at the bottom of the mesa due to the quasi-vertical structure.展开更多
Cooperative spectrum monitoring with multiple sensors has been deemed as an efficient mechanism for improving the monitoring accuracy and enlarging the monitoring area in wireless sensor networks.However,there exists ...Cooperative spectrum monitoring with multiple sensors has been deemed as an efficient mechanism for improving the monitoring accuracy and enlarging the monitoring area in wireless sensor networks.However,there exists redundancy among the spectrum data collected by a sensor node within a data collection period,which may reduce the data uploading efficiency.In this paper,we investigate the inter-data commonality detection which describes how much two data have in common.We define common segment set and divide it into six categories firstly,then a method to measure a common segment set is conducted by extracting commonality between two files.Moreover,the existing algorithms fail in finding a good common segment set,so Common Data Measurement(CDM)algorithm that can identify a good common segment set based on inter-data commonality detection is proposed.Theoretical analysis proves that CDM algorithm achieves a good measurement for the commonality between two strings.In addition,we conduct an synthetic dataset which are produced randomly.Numerical results shows that CDM algorithm can get better performance in measuring commonality between two binary files compared with Greedy-String-Tiling(GST)algorithm and simple greedy algorithm.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51872090,51772097,51972346)the Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+3 种基金the Natural Science Foundation of Hebei Province(No.E2020209151)the Hunan Natural Science Fund for Distinguished Young Scholar(2021JJ10064)the Program of Youth Talent Support for Hunan Province(2020RC3011)the Innovation-Driven Project of Central South University(No.2020CX024).
文摘Due to their high safety and low cost,rechargeable aqueous Zn-ion batteries(RAZIBs)have been receiving increased attention and are expected to be the next generation of energy storage systems.However,metal Zn anodes exhibit a limited-service life and inferior reversibility owing to the issues of Zn dendrites and side reactions,which severely hinder the further development of RAZIBs.Researchers have attempted to design high-performance Zn anodes by interfacial engineering,including surface modification and the addition of electrolyte additives,to stabilize Zn anodes.The purpose is to achieve uniform Zn nucleation and flat Zn deposition by regulating the deposition behavior of Zn ions,which effectively improves the cycling stability of the Zn anode.This review comprehensively summarizes the reaction mechanisms of interfacial modification for inhibiting the growth of Zn dendrites and the occurrence of side reactions.In addition,the research progress of interfacial engineering strategies for RAZIBs is summarized and classified.Finally,prospects and suggestions are provided for the design of highly reversible Zn anodes.
基金supported by the National Natural Science Foundation of China(Nos.21771164,U1804129,21773215)。
文摘Metal selenides owing to their high theoretical capacity and good conductivity are considered as one of the potential candidates for the anode materials of sodium-ion batteries(SIBs).However,their practical applications are greatly restricted by the poor cycling performances and complicated synthesis methods.In this work,a sandwich-like Sn Se2/reduced graphene oxide(r GO)composite with a small amount of r GO(7.3%)is synthesized by a simple one-pot solvothermal technique.The as-synthesized Sn Se2/r GO shows improved initial coulombic efficiency(ICE)of 73.7%,high capacity of 402.0 m Ah g-1 after 150 cycles at 0.1 A g-1 with a retention of 86.2%and outstanding rate performances.The abundant Sn-O-C bonds of synthesized material not only accelerate the charge transfer at the interface but also enhance the mechanical strength to accommodate volume variation and prevent active material loss during cycling.Moreover,the compact structure leads to thin solid electrolyte interface(SEI)so that high initial coulombic efficiency was obtained.Furthermore,full cells are assembled to test its potential application.This work offers a simple method to synthesize Sn Se2/r GO as a candidate anode for SIBs.
基金financially supported by the National Key R&D Program of China(Grant Nos.2016YFA0202704 and 2019YFA0706900)the Beijing Municipal Natural Science Foundation(Grant No.2212052)+1 种基金the China Postdoctoral Science Foundation(Grant No.2019T120390)the Jiangsu Planned Projects for Postdoctoral research funds(Grant No.2018K018A)。
文摘It is of great importance to explore a creative route to improve the degradation e ciency of organic pollutants in wastewater.Herein,we construct a unique hybrid system by combining self-powered triboelectric nanogenerator(TENG)with carbon dots-TiO_(2)sheets doped three-dimensional graphene oxide photocatalyst(3 DGA@CDs-TNs),which can significantly enhance the degradation e ciency of brilliant green(BG)and direct blue 5 B(DB)owing to the powerful interaction of TENG and 3 DGA@CDs-TNs photocatalyst.The power output of TENG can be applied for wastewater purification directly,which exhibits a selfpowered electrocatalytic technology.Furthermore,the results also verify that TENG can replace conventional electric catalyst to remove pollutants e ectively from wastewater without any consumption.Subsequently,the unstable fragments and the plausible removal pathways of the two pollutants are proposed.Our work sheds light on the development of e cient and sustainable TENG/photocatalyst system,opening up new opportunities and possibilities for comprehensive utilization of random energy.
基金the National Natural Science Foundation of China(Grant Nos.21573040 and 21603029)the Natural Science Foundation and Science and Technology Development Planning of Jilin Province(20150204086GX and20170520148JH)+3 种基金the Fundamental Research Funds for the Central Universities(2412016KJ007 and 2412016KJ020)the China Postdoctoral Science Foundation(2016M600224)the Jilin Provincial Research Foundation for Basic Research(20160519012JH)Jilin Provincial Key Laboratory of Advanced Energy Materials(Northeast Normal University)
文摘A facile strategy to fabricate gold nanorod@polyacrylic acid/calcium phosphate(Au NR@-PAA/Ca P) yolk–shell nanoparticles(NPs) composed with a PAA/Ca P shell and an Au NR yolk is reported. The asobtained Au NR@PAA/Ca P yolk–shell NPs possess ultrahigh doxorubicin(DOX) loading capability(1 mg DOX/mg NPs), superior photothermal conversion property(26%)and p H/near-infrared(NIR) dual-responsive drug delivery performance. The released DOX continuously increased due to the damage of the Ca P shell at low p H values. When the DOX-loaded Au NR@PAA/Ca P yolk–shell NPs wereexposed to NIR irradiation, a burst-like drug release occurs owing to the heat produced by the Au NRs. Furthermore,Au NR@PAA/Ca P yolk–shell NPs are successfully employed for synergic dual-mode X-ray computed tomography/photoacoustic imaging and chemo-photothermal cancer therapy. Therefore, this work brings new insights for the synthesis of multifunctional nanomaterials and extends theranostic applications.
基金supported by the Natural Science Foundation of Guangxi(2016GXNSFEA380003)Guangxi Science and Technology Major Special Project(AA17204075)+1 种基金Guangxi Science and Technology Major Special Project(AA4102)Shandong Provincial Key R&D Program(LJNY202018)。
文摘The present study investigated the anti-diabetic activity and potential mechanisms of sea cucumber gonad hydrolysates(SCGH)in a rat model of type II diabetes induced by streptozotocin(STZ)combined with high-fat diet(HFD).Results showed that SCGH significantly reduced water intake,fasting blood glucose level and glycated hemoglobin level.Moreover,the oral glucose tolerance,insulin resistance and plasma lipid level in diabetic rats were also alleviated.Furthermore,histological analysis showed that SCGH effectively protected the tissue structure of liver.In addition,mechanism studies showed that SCGH improved glucose metabolism via activating the IRS/Akt signaling pathway,and promoted lipid metabolism via activating the AMPK signaling pathway.In summary,these findings suggested that SCGH have potential anti-diabetic effects by improving insulin resistance and lipid metabolism disorders.
基金Natural Science Foundation of Guangdong Province (No. 030514)the Science and Technology Program of Guangdong Province(No. 2004B33401006)
文摘Mixed oxygen-ionic and electronic conducting membranes of SrFe(Cu)O3-δ were prepared by solid-state reaction method. The crystal structure, oxygen nonstoichiometry, and phase stability of the materials were studied by TGA and XRD. Oxygen permeation fluxes through these membranes were studied at operating temperature ranging from 750 to 950 ℃. Results showed that doping Cu in SrFeO3-δ compound had a significant effect on the formation of single-phased perovskite structure. For SrFe1-xCu2O3-δ series materials, the oxygen nonstoichiometry and the oxygen permeation flux increased considerably with the increase of Cu-doping content (x = 0.1-0.3). The sintering property of the membrane decreased significantly when the Cu substitution amount reached 40%. SrFe0.7Cu0.3O3-δ showed high oxygen permeation flux, but SrCuO2 and Sr2Fe2O5 phases formed in the compound after oxygen permeation test induced cracks in the membrane.
基金the National Science Fund for Distinguished Young Scholars(81525002,2016-2020).
文摘Objective Many physiological and pathological conditions,including cyanotic congenital heart diseases(CCHD),are accompanied by chronic hypoxia,which might interfere with the transcription process.However,the transcriptome profile in peripheral blood under hypoxia is still unidentified.The present work aimed to explore the transcriptional profile alteration of peripheral blood in chronic hypoxia.Methods The present study used a chronic hypoxia rat model to simulate the hypoxic state of CCHD patients.Two groups of Sprague-Dawley rats(n=6 per group)were either exposed to hypoxia(10%O2)or normoxia(21%O2)for 3 weeks.Body weight was measured weekly.Peripheral blood was collected and total RNA was extracted for RNA-Seq at the end of the hypoxia treatment.After quality assessment,the library was sequenced by the Illumina Hiseq platform.The differentially expressed genes were screened(false discovery rate<0.05 and fold change>2).The functional annotation analysis and cluster analysis of differentially expressed genes were performed based on the adjusted P-value(padj<0.05).Results Compared with the control group,the body weight of the rats in the hypoxia group was significantly lowered(P<0.01).RNA-Seq results showed that the transcriptome patterns of the two groups had significant differences.In total,872 genes were identified as differentially expressed.Among all,803 genes were downregulated,while only 69 genes were up-regulated in the hypoxia group.The functional enrichment analysis of the 872 genes showed that multiple biological processes involved,such as porphyrin-containing compound metabolic process,hemoglobin complex and oxygen transporter activity.Conclusions Our study demonstrated the transcriptional profile alteration in peripheral blood of chronic hypoxia rat model.This study provided basic data and directions to further understand the physiological and pathological changes in patients with CCHD.
基金supported by the National Natural Science Foundation of China(No.51876080)the Program for Taishan Scholars of Shandong Province Government。
文摘Oxides with different crystal phases can have important effects on the configuration of surface atoms,which can further affect the distribution of hydrogenation sites and acidic sites as well as the competitions of these varied types of catalytic sites.This could be potentially used to tailor the distribution of the products.In this study,zirconium oxides with different crystal phases supported copper catalysts were prepared for the hydrogenation of the biomass-derived furfural,vanillin,etc.The results showed that both calcination temperature and Cu species affected the shift of zirconia from tetragonal phase to the monoclinic phase.Monoclinic zirconia supported copper catalyst can effectively catalyze the hydrogenation of furfural to furfuryl alcohol via hydrogenation route due to its low amount of Brønsted acidic sites,although the surface area and the exposed metallic Cu surface area were much lower than the tetragonal zirconia supported copper catalyst.Zirconia with tetragonal or tetragonal/monoclinic phases supported copper catalysts contain abundant acidic sites and especially the Br?nsted acidic sites,which catalyzed mainly the conversion of furfural via the acid-catalyzed routes such as the acetalization,rather than the hydrogenation.The acidic sites over the Cu/ZrO_(2)catalyst played more predominant roles than the hydrogenation sites in determining the conversion of the organics like furfural and vanillin.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0101690001)the Natural Science Foundation of Sichuan Province,China(Grant No.22YYJC0596)。
文摘A quasi-vertical Ga N Schottky barrier diode with a hybrid anode structure is proposed to trade off the on-resistance and the breakdown voltage.By inserting a Si N dielectric between the anode metal with a relatively small length,it suppresses the electric field crowding effect without presenting an obvious effect on the forward characteristics.The enhanced breakdown voltage is ascribed to the charge-coupling effect between the insulation dielectric layer and Ga N.On the other hand,the current density is decreased beneath the dielectric layer with the increasing length of the Si N,resulting in a high on-resistance.Furthermore,the introduction of the field plate on the side wall forms an metal-oxide-semiconductor(MOS)channel and decreases the series resistance,but also shows an obvious electric field crowding effect at the bottom of the mesa due to the quasi-vertical structure.
基金supported in part by the National Natural Science Foundation of China(No.61901328)the China Postdoctoral Science Foundation (No. 2019M653558)+1 种基金the Fundamental Research Funds for the Central Universities (No. CJT150101)the Key project of National Natural Science Foundation of China (No. 61631015)
文摘Cooperative spectrum monitoring with multiple sensors has been deemed as an efficient mechanism for improving the monitoring accuracy and enlarging the monitoring area in wireless sensor networks.However,there exists redundancy among the spectrum data collected by a sensor node within a data collection period,which may reduce the data uploading efficiency.In this paper,we investigate the inter-data commonality detection which describes how much two data have in common.We define common segment set and divide it into six categories firstly,then a method to measure a common segment set is conducted by extracting commonality between two files.Moreover,the existing algorithms fail in finding a good common segment set,so Common Data Measurement(CDM)algorithm that can identify a good common segment set based on inter-data commonality detection is proposed.Theoretical analysis proves that CDM algorithm achieves a good measurement for the commonality between two strings.In addition,we conduct an synthetic dataset which are produced randomly.Numerical results shows that CDM algorithm can get better performance in measuring commonality between two binary files compared with Greedy-String-Tiling(GST)algorithm and simple greedy algorithm.