期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effects of fluorination on crystal structure and electrochemical performance of antiperovskite solid electrolytes 被引量:1
1
作者 Lei Gao Manrong Song +9 位作者 Ruo Zhao songbai han Jinlong Zhu Wei Xia Juncao Bian Liping Wang Song Gao Yonggang Wang Ruqiang Zou Yusheng Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期521-528,I0013,共9页
The development of all-solid-state lithium batteries(ASSLBs)depends on exploiting solid-state electrolytes(SSEs)with high ionic conductivity and electrochemical stability.Fluorination is generally considered to be an ... The development of all-solid-state lithium batteries(ASSLBs)depends on exploiting solid-state electrolytes(SSEs)with high ionic conductivity and electrochemical stability.Fluorination is generally considered to be an effective strategy to improve the ionic conductivity and electrochemical stability of inorganic SSEs.Here,we report the partial fluorination of the chlo rine sites in an antiperovskite,by which the orthorhombic Li_(2)OHCl was transformed into cubic Li_(2)OHCl_(0.9)F_(0.1),resulting in a fourfold increase in ionic conductivity at 30℃.The ab initio molecular dynamics simulations suggest that both the crystal symmetry and the anions electronegativity influence the diffusion of Li+in the antiperovskite structure.Besides,from the perspective of experiments and calculations,it is confirmed that fluorination is a feasible method to improve the electrochemical stability of antiperovskite SSEs.The LiFePO_(4)|Li cell based on Li_(2)OHCl_(0.9)F_(0.1) is also assembled and exhibits stable cycle performance,which indicates that fluorination of antiperovskite SSEs is an effective way to produce high-performance SSEs for practical application of ASSLBs. 展开更多
关键词 ANTIPEROVSKITE Solid-state electrolyte FLUORINATION Ionic conductivity
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部