The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time...The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.展开更多
With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due ...With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due to the rapid growth of mobile communication traffic, high cost and the scarcity of wireless resources, it is especially important to develop an efficient radio resource management mechanism. In this paper, we focus on the shortcomings of resource waste, and we consider the actual situation of base station dynamic coverage and user requirements. We propose a spectrum pricing and allocation scheme based on Stackelberg game model under F-RAN framework, realizing the allocation of resource on demand. This scheme studies the double game between the users and the operators, as well as between the traditional operators and the virtual operators, maximizing the profits of the operators. At the same time, spectrum reuse technology is adopted to improve the utilization of network resource. By analyzing the simulation results, it is verified that our proposed scheme can not only avoid resource waste, but also effectively improve the operator's revenue efficiency and overall network resource utilization.展开更多
It is very important to understand why a small amount of alkali metal doping in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells can improve the conversion efficiency.In this work,Na-doped CZTSSe is prepared by a simple soluti...It is very important to understand why a small amount of alkali metal doping in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells can improve the conversion efficiency.In this work,Na-doped CZTSSe is prepared by a simple solution method,and then the effects on the surface properties of the absorber layer,the buffer layer growth,and the modifications of the solar cell performance induced by the Na doping are studied.The surface of the absorber layer is more Cu-depletion and less roughness due to the Na doping.In addition,the contact angle of the surface increases because of Na doping.As a consequence,the thickness of the CdS buffer layer is significantly reduced and the optical losses in the CdS buffer layer are decreased.The difference of quasi-Fermi levels(EFn-EFp) increases with a small amount of Na doping in the CZTSSe solar cell,so that open circuit voltage(VOC) increased significantly.This work offers new insights into the effects of Na doping on CZTSSe via a solution-based approach and provides a deeper understanding of the origin of the efficiency improvement of Na-doped CZTSSe thin film solar cells.展开更多
Alkali metal doping or sulfurization are commonly applied in Cu_(2)ZnSnSe_(4) (CZTSe) solar cell to improve the open-circuit voltage (VOC). However, alkali metal sulfide affording both alkali metal and sulfur is seldo...Alkali metal doping or sulfurization are commonly applied in Cu_(2)ZnSnSe_(4) (CZTSe) solar cell to improve the open-circuit voltage (VOC). However, alkali metal sulfide affording both alkali metal and sulfur is seldom to be studied, which restrains the development of kesterite solar cells. In this study, we evaporate Li_(2)S during selenization process and hope to provide both alkali metal and sulfur to CZTSe film. The result indicates that Li shows a gradient distribution near the surface of CZTSe film and the content of S is slight. The film quality is improved and the recombination at grain boundaries is decreased after Li_(2)S treatment. Besides, the bandgap of the absorber gets wider. Under the synergy of sulfur and lithium (mainly from lithium), the work function of the treated absorber gets higher and the conduction band offset (CBO) is in the ideal range. Combined with these contributions, the V_(OC) of the champion device treated by Li_(2)S dramatically increase by 120 mV. This study discloses that alkali metal brings the main effect on the performance of the kesterite solar cell even an alkali metal sulfide is evaporated, which deepens the understanding of sulfurization of CZTSe and also promote the progress of kesterite solar cells.展开更多
To illuminate the thermal transfer mechanism of devices adopting polytetrafluoroethylene(PTFE) as ablation materials,the thermal radiation properties of PTFE plasma are calculated and discussed based on local thermo...To illuminate the thermal transfer mechanism of devices adopting polytetrafluoroethylene(PTFE) as ablation materials,the thermal radiation properties of PTFE plasma are calculated and discussed based on local thermodynamic equilibrium(LTE) and optical thin assumptions.It is clarified that line radiation is the dominant mechanism of PTFE plasma.The emission coefficient shows an opposite trend for both wavelength regions divided by 550 nm at a temperature above15 000 K.The emission coefficient increases with increasing temperature and pressure.Furthermore,it has a good log linear relation with pressure.Equivalent emissivity varies complexly with temperature,and has a critical point between 20 000 K to 25 000 K.The equivalent cross points of the average ionic valence and radiation property are about 10 000 K and 15 000 K for fully single ionization.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant No.62276274)Shaanxi Natural Science Foundation(Grant No.2023-JC-YB-528)Chinese aeronautical establishment(Grant No.201851U8012)。
文摘The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.
基金supported in part by the National Natural Science Foundation of China (61771120)the Fundamental Research Funds for the Central Universities (N171602002)
文摘With the explosive growth of highspeed wireless data demand and the number of mobile devices, fog radio access networks(F-RAN) with multi-layer network structure becomes a hot topic in recent research. Meanwhile, due to the rapid growth of mobile communication traffic, high cost and the scarcity of wireless resources, it is especially important to develop an efficient radio resource management mechanism. In this paper, we focus on the shortcomings of resource waste, and we consider the actual situation of base station dynamic coverage and user requirements. We propose a spectrum pricing and allocation scheme based on Stackelberg game model under F-RAN framework, realizing the allocation of resource on demand. This scheme studies the double game between the users and the operators, as well as between the traditional operators and the virtual operators, maximizing the profits of the operators. At the same time, spectrum reuse technology is adopted to improve the utilization of network resource. By analyzing the simulation results, it is verified that our proposed scheme can not only avoid resource waste, but also effectively improve the operator's revenue efficiency and overall network resource utilization.
基金supported by the National Key R&D Program of China(2019YFB1503500,2018YFB1500200,2018YEE0203400)the Natural Science Foundation of China(U1902218,11774187)the 111 project(B16027)。
文摘It is very important to understand why a small amount of alkali metal doping in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells can improve the conversion efficiency.In this work,Na-doped CZTSSe is prepared by a simple solution method,and then the effects on the surface properties of the absorber layer,the buffer layer growth,and the modifications of the solar cell performance induced by the Na doping are studied.The surface of the absorber layer is more Cu-depletion and less roughness due to the Na doping.In addition,the contact angle of the surface increases because of Na doping.As a consequence,the thickness of the CdS buffer layer is significantly reduced and the optical losses in the CdS buffer layer are decreased.The difference of quasi-Fermi levels(EFn-EFp) increases with a small amount of Na doping in the CZTSSe solar cell,so that open circuit voltage(VOC) increased significantly.This work offers new insights into the effects of Na doping on CZTSSe via a solution-based approach and provides a deeper understanding of the origin of the efficiency improvement of Na-doped CZTSSe thin film solar cells.
基金This work was supported by the National Key R&D Program of China(2018YFB1500200,2019YFB1503500)the National Natural Science Foundation of China(U1902218,11774187)the 111 Project(B16027).
文摘Alkali metal doping or sulfurization are commonly applied in Cu_(2)ZnSnSe_(4) (CZTSe) solar cell to improve the open-circuit voltage (VOC). However, alkali metal sulfide affording both alkali metal and sulfur is seldom to be studied, which restrains the development of kesterite solar cells. In this study, we evaporate Li_(2)S during selenization process and hope to provide both alkali metal and sulfur to CZTSe film. The result indicates that Li shows a gradient distribution near the surface of CZTSe film and the content of S is slight. The film quality is improved and the recombination at grain boundaries is decreased after Li_(2)S treatment. Besides, the bandgap of the absorber gets wider. Under the synergy of sulfur and lithium (mainly from lithium), the work function of the treated absorber gets higher and the conduction band offset (CBO) is in the ideal range. Combined with these contributions, the V_(OC) of the champion device treated by Li_(2)S dramatically increase by 120 mV. This study discloses that alkali metal brings the main effect on the performance of the kesterite solar cell even an alkali metal sulfide is evaporated, which deepens the understanding of sulfurization of CZTSe and also promote the progress of kesterite solar cells.
基金supported by National Natural Science Foundation of China(No.51576018)
文摘To illuminate the thermal transfer mechanism of devices adopting polytetrafluoroethylene(PTFE) as ablation materials,the thermal radiation properties of PTFE plasma are calculated and discussed based on local thermodynamic equilibrium(LTE) and optical thin assumptions.It is clarified that line radiation is the dominant mechanism of PTFE plasma.The emission coefficient shows an opposite trend for both wavelength regions divided by 550 nm at a temperature above15 000 K.The emission coefficient increases with increasing temperature and pressure.Furthermore,it has a good log linear relation with pressure.Equivalent emissivity varies complexly with temperature,and has a critical point between 20 000 K to 25 000 K.The equivalent cross points of the average ionic valence and radiation property are about 10 000 K and 15 000 K for fully single ionization.